Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Frontiers of Medicine
  3. Article

Molecular network-based intervention brings us closer to ending the HIV pandemic

  • Review
  • Open access
  • Published: 23 March 2020
  • Volume 14, pages 136–148, (2020)
  • Cite this article
Download PDF

You have full access to this open access article

Frontiers of Medicine Aims and scope Submit manuscript
Molecular network-based intervention brings us closer to ending the HIV pandemic
Download PDF
  • Xiaoxu Han1,2,3,
  • Bin Zhao1,2,3,
  • Minghui An1,2,3,
  • Ping Zhong1,4 &
  • …
  • Hong Shang1,2,3 
  • 1981 Accesses

  • Explore all metrics

Abstract

Precise identification of HIV transmission among populations is a key step in public health responses. However, the HIV transmission network is usually difficult to determine. HIV molecular networks can be determined by phylogenetic approach, genetic distance-based approach, and a combination of both approaches. These approaches are increasingly used to identify transmission networks among populations, reconstruct the history of HIV spread, monitor the dynamics of HIV transmission, guide targeted intervention on key subpopulations, and assess the effects of interventions. Simulation and retrospective studies have demonstrated that these molecular network-based interventions are more cost-effective than random or traditional interventions. However, we still need to address several challenges to improve the practice of molecular network-guided targeting interventions to finally end the HIV epidemic. The data remain limited or difficult to obtain, and more automatic real-time tools are required. In addition, molecular and social networks must be combined, and technical parameters and ethnic issues warrant further studies.

Article PDF

Download to read the full article text

Similar content being viewed by others

Unraveling HIV-1 transmission patterns through molecular surveillance in a hotspot in Yunnan Province, China

Article Open access 22 March 2025

Methodological synthesis of Bayesian phylodynamics, HIV-TRACE, and GEE: HIV-1 transmission epidemiology in a racially/ethnically diverse Southern U.S. context

Article Open access 08 February 2021

Investigating time, strength, and duration of measures in controlling the spread of COVID-19 using a networked meta-population model

Article 27 June 2020

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Complex Networks
  • Molecular Ecology
  • Molecularly targeted therapy
  • Network Models
  • Network Research
  • HIV infections
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. McMahon JH, Medland N. 90-90-90: how do we get there? Lancet HIV 2014; 1(1): e20–e11

    Google Scholar 

  2. Kazanjian P. UNAIDS 90-90-90 campaign to end the AIDS epidemic in historic perspective. Milbank Q 2017; 95(2): 408–439

    PubMed  PubMed Central  Google Scholar 

  3. Machuca R, Jørgensen LB, Theilade P, Nielsen C. Molecular investigation of transmission of human immunodeficiency virus type 1 in a criminal case. Clin Diagn Lab Immunol 2001; 8(5): 884–890

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Leitner T, Escanilla D, Franzén C, Uhlén M, Albert J. Accurate reconstruction of a known HIV-1 transmission history by phylogenetic tree analysis. Proc Natl Acad Sci USA 1996; 93(20): 10864–10869

    CAS  PubMed  Google Scholar 

  5. Trask SA, Derdeyn CA, Fideli U, Chen Y, Meleth S, Kasolo F, Musonda R, Hunter E, Gao F, Allen S, Hahn BH. Molecular epidemiology of human immunodeficiency virus type 1 transmission in a heterosexual cohort of discordant couples in Zambia. J Virol 2002; 76(1): 397–405

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith DM, May SJ, Tweeten S, Drumright L, Pacold ME, Kosakovsky Pond SL, Pesano RL, Lie YS, Richman DD, Frost SD, Woelk CH, Little SJ. A public health model for the molecular surveillance of HIV transmission in San Diego, California. AIDS 2009; 23(2): 225–232

    PubMed  PubMed Central  Google Scholar 

  7. Aldous JL, Pond SK, Poon A, Jain S, Qin H, Kahn JS, Kitahata M, Rodriguez B, Dennis AM, Boswell SL, Haubrich R, Smith DM. Characterizing HIV transmission networks across the United States. Clin Infect Dis 2012; 55(8): 1135–1143

    PubMed  PubMed Central  Google Scholar 

  8. Little SJ, Kosakovsky Pond SL, Anderson CM, Young JA, Wertheim JO, Mehta SR, May S, Smith DM. Using HIV networks to inform real time prevention interventions. PLoS One 2014; 9(6): e98443

    PubMed  PubMed Central  Google Scholar 

  9. Volz EM, Le Vu S, Ratmann O, Tostevin A, Dunn D, Orkin C, O’Shea S, Delpech V, Brown A, Gill N, Fraser C; UK HIV Drug Resistance Database. Molecular epidemiology of HIV-1 subtype B reveals heterogeneous transmission risk: implications for intervention and control. J Infect Dis 2018; 217(10): 1522–1529

    PubMed  PubMed Central  Google Scholar 

  10. Oster AM, France AM, Mermin J. Molecular epidemiology and the transformation of HIV prevention. JAMA 2018; 319(16): 1657–1658

    PubMed  Google Scholar 

  11. National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention; Division of HIV/AIDS. Prevention Detecting and Responding to HIV Transmission Clusters: A Guide for Health Department. 2018. https://www.cdc.gov/hiv/pdf/funding/announcements/ps18-1802/CDC-HIV-PS18-1802-AttachmentE-Detecting-Investigating-and-Responding-to-HIV-Transmission-Clusters.pdf

  12. Fauci AS, Redfield RR, Sigounas G, Weahkee MD, Giroir BP. Ending the HIV epidemic: a plan for the United States. JAMA 2019; 321(9): 844–845

    Google Scholar 

  13. Hué S, Clewley JP, Cane PA, Pillay D. HIV-1 pol gene variation is sufficient for reconstruction of transmissions in the era of antiretroviral therapy. AIDS 2004; 18(5): 719–728

    PubMed  Google Scholar 

  14. Yebra G, Hodcroft EB, Ragonnet-Cronin ML, Pillay D, Brown AJ; PANGEA_HIV Consortium; ICONIC Project. Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic. Sci Rep 2016; 6(1): 39489

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yerly S, Vora S, Rizzardi P, Chave JP, Vernazza PL, Flepp M, Telenti A, Battegay M, Veuthey AL, Bru JP, Rickenbach M, Hirschel B, Perrin L; Swiss HIV Cohort Study. Acute HIV infection: impact on the spread of HIV and transmission of drug resistance. AIDS 2001; 15(17): 2287–2292

    CAS  PubMed  Google Scholar 

  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4(4): 406–425

    CAS  PubMed  Google Scholar 

  17. Baele G, Lemey P, Bedford T, Rambaut A, Suchard MA, Alekseyenko AV. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol Biol Evol 2012; 29(9): 2157–2167

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Baele G, Li WL, Drummond AJ, Suchard MA, Lemey P. Accurate model selection of relaxed molecular clocks in bayesian phylogenetics. Mol Biol Evol 2013; 30(2): 239–243

    CAS  PubMed  Google Scholar 

  19. Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, Heled J, Jones G, Kühnert D, De Maio N, Matschiner M, Mendes FK, Müller NF, Ogilvie HA, du Plessis L, Popinga A, Rambaut A, Rasmussen D, Siveroni I, Suchard MA, Wu CH, Xie D, Zhang C, Stadler T, Drummond AJ. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol 2019; 15(4): e1006650

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol 2018; 4(1): vey016

    PubMed  PubMed Central  Google Scholar 

  21. Dennis AM, Hué S, Billock R, Levintow S, Sebastian J, Miller WC, Eron JJ. Human immunodeficiency virus type 1 phylodynamics to detect and characterize active transmission clusters in North Carolina. J Infect Dis 2019 Apr 27. [Epub ahead of print] doi: https://doi.org/10.1093/infdis/jiz176

  22. Wilkinson E, Junqueira DM, Lessells R, Engelbrecht S, van Zyl G, de Oliveira T, Salemi M. The effect of interventions on the transmission and spread of HIV in South Africa: a phylodynamic analysis. Sci Rep 2019; 9(1): 2640

    PubMed  PubMed Central  Google Scholar 

  23. Poon AF. Impacts and shortcomings of genetic clustering methods for infectious disease outbreaks. Virus Evol 2016; 2(2): vew031

    PubMed  PubMed Central  Google Scholar 

  24. Aldous JL, Pond SK, Poon A, Jain S, Qin H, Kahn JS, Kitahata M, Rodriguez B, Dennis AM, Boswell SL, Haubrich R, Smith DM. Characterizing HIV transmission networks across the United States. Clin Infect Dis 2012; 55(8): 1135–1143

    PubMed  PubMed Central  Google Scholar 

  25. Chin BS, Chaillon A, Mehta SR, Wertheim JO, Kim G, Shin HS, Smith DM. Molecular epidemiology identifies HIV transmission networks associated with younger age and heterosexual exposure among Korean individuals. J Med Virol 2016; 88(10): 1832–1835

    PubMed  PubMed Central  Google Scholar 

  26. Wang X, Wu Y, Mao L, Xia W, Zhang W, Dai L, Mehta SR, Wertheim JO, Dong X, Zhang T, Wu H, Smith DM. Targeting HIV prevention based on molecular epidemiology among deeply sampled subnetworks of men who have sex with men. Clin Infect Dis 2015; 61(9): 1462–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Rose R, Lamers SL, Dollar JJ, Grabowski MK, Hodcroft EB, Ragonnet-Cronin M, Wertheim JO, Redd AD, German D, Laeyendecker O. Identifying transmission clusters with cluster picker and HIV-TRACE. AIDS Res Hum Retroviruses 2017; 33(3): 211–218

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Prosperi MC, Ciccozzi M, Fanti I, Saladini F, Pecorari M, Borghi V, Di Giambenedetto S, Bruzzone B, Capetti A, Vivarelli A, Rusconi S, Re MC, Gismondo MR, Sighinolfi L, Gray RR, Salemi M, Zazzi M, De Luca A; ARCA collaborative group. A novel methodology for large-scale phylogeny partition. Nat Commun 2011; 2(1): 321

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ragonnet-Cronin M, Hodcroft E, Hué S, Fearnhill E, Delpech V, Brown AJ, Lycett S; UK HIV Drug Resistance Database. Automated analysis of phylogenetic clusters. BMC Bioinformatics 2013; 14(1): 317

    PubMed  PubMed Central  Google Scholar 

  30. Hassan AS, Pybus OG, Sanders EJ, Albert J, Esbjörnsson J. Defining HIV-1 transmission clusters based on sequence data. AIDS 2017; 31(9): 1211–1222

    PubMed  PubMed Central  Google Scholar 

  31. Paraskevis D, Magiorkinis E, Magiorkinis G, Kiosses VG, Lemey P, Vandamme AM, Rambaut A, Hatzakis A. Phylogenetic reconstruction of a known HIV-1 CRF04_cpx transmission network using maximum likelihood and Bayesian methods. J Mol Evol 2004; 59(5): 709–717

    CAS  PubMed  Google Scholar 

  32. Esbjörnsson J, Mild M, Audelin A, Fonager J, Skar H, Bruun Jørgensen L, Liitsola K, Björkman P, Bratt G, Gisslén M, Sönnerborg A, Nielsen C; SPREAD/ESAR Programme, Medstrand P, Albert J. HIV-1 transmission between MSM and heterosexuals, and increasing proportions of circulating recombinant forms in the Nordic Countries. Virus Evol 2016; 2(1): vew010

    PubMed  PubMed Central  Google Scholar 

  33. Bruhn CA, Audelin AM, Helleberg M, Bjorn-Mortensen K, Obel N, Gerstoft J, Nielsen C, Melbye M, Medstrand P, Gilbert MT, Esbjrnsson J. The origin and emergence of an HIV-1 epidemic: from introduction to endemicity. AIDS 2014; 28(7): 1031–1040

    PubMed  Google Scholar 

  34. Jovanović L, Šiljić M, Ćirković V, Salemović D, Pešić-Pavlović I, Todorović M, Ranin J, Jevtović D, Stanojević M. Exploring evolutionary and transmission dynamics of HIV epidemic in Serbia: bridging socio-demographic with phylogenetic approach. Front Microbiol, 2019, 10: 287

    PubMed  PubMed Central  Google Scholar 

  35. Bbosa N, Ssemwanga D, Nsubuga RN, Salazar-Gonzalez JF, Salazar MG, Nanyonjo M, Kuteesa M, Seeley J, Kiwanuka N, Bagaya BS, Yebra G, Leigh-Brown A, Kaleebu P. Phylogeography of HIV-1 suggests that Ugandan fishing communities are a sink for, not a source of, virus from general populations. Sci Rep 2019; 9(1): 1051

    PubMed  PubMed Central  Google Scholar 

  36. Ragonnet-Cronin M, Jackson C, Bradley-Stewart A, Aitken C, McAuley A, Palmateer N, Gunson R, Goldberg D, Milosevic C, Leigh Brown AJ. Recent and rapid transmission of HIV among people who inject drugs in Scotland revealed through phylogenetic analysis. J Infect Dis 2018; 217(12): 1875–1882

    PubMed  PubMed Central  Google Scholar 

  37. Paraskevis D, Beloukas A, Stasinos K, Pantazis N, de Mendoza C, Bannert N, Meyer L, Zangerle R, Gill J, Prins M, d’Arminio Montforte A, Kran AB, Porter K, Touloumi G; CASCADE collaboration of EuroCoord. HIV-1 molecular transmission clusters in nine European countries and Canada: association with demographic and clinical factors. BMC Med 2019; 17(1): 4

    PubMed  PubMed Central  Google Scholar 

  38. de Oliveira T, Kharsany AB, Gräf T, Cawood C, Khanyile D, Grobler A, Puren A, Madurai S, Baxter C, Karim QA, Karim SS. Transmission networks and risk of HIV infection in KwaZulu-Natal, South Africa: a community-wide phylogenetic study. Lancet HIV 2017; 4(1): e41–e50

    PubMed  Google Scholar 

  39. Faria NR, Rambaut A, Suchard MA, Baele G, Bedford T, Ward MJ, Tatem AJ, Sousa JD, Arinaminpathy N, Pépin J, Posada D, Peeters M, Pybus OG, Lemey P. The early spread and epidemic ignition of HIV-1 in human populations. Science 2014; 346(6205): 56–61

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Waruru A, Achia TNO, Tobias JL, Nganga J, Mwangi M, Wamicwe J, Zielinski-Gutierrez E, Oluoch T, Muthama E, Tylleskär T. Finding hidden HIV clusters to support geographic-oriented HIV interventions in Kenya. J Acquir Immune Defic Syndr 2018; 78(2): 144–154

    PubMed  PubMed Central  Google Scholar 

  41. Butt Z, Grady S, Wilkins M, Hamilton E, Todem D, Gardiner J, Saeed M. Spatial epidemiology of HIV-hepatitis co-infection in the State of Michigan: a cohort study. Infect Dis (Lond) 2015; 47(12): 852–861

    Google Scholar 

  42. Stecher M, Hoenigl M, Eis-Hbinger AM, Lehmann C, Fätkenheuer G, Wasmuth JC, Knops E, Vehreschild JJ, Mehta S, Chaillon A. Hotspots of transmission driving the local human immunodeficiency virus epidemic in the Cologne-Bonn Region, Germany. Clin Infect Dis 2019; 68(9): 1539–1546

    PubMed  Google Scholar 

  43. Chaillon A, Essat A, Frange P, Smith DM, Delaugerre C, Barin F, Ghosn J, Pialoux G, Robineau O, Rouzioux C, Goujard C, Meyer L, Chaix ML; on behalf the ANRS PRIMO Cohort Study. Spatiotemporal dynamics of HIV-1 transmission in France (1999–2014) and impact of targeted prevention strategies. Retrovirology 2017; 14(1): 15

    PubMed  PubMed Central  Google Scholar 

  44. Wertheim JO, Leigh Brown AJ, Hepler NL, Mehta SR, Richman DD, Smith DM, Kosakovsky Pond SL. The global transmission network of HIV-1. J Infect Dis 2014; 209(2): 304–313

    PubMed  Google Scholar 

  45. Fisher M, Pao D, Brown AE, Sudarshi D, Gill ON, Cane P, Buckton AJ, Parry JV, Johnson AM, Sabin C, Pillay D. Determinants of HIV-1 transmission in men who have sex with men: a combined clinical, epidemiological and phylogenetic approach. AIDS 2010; 24(11): 1739–1747

    PubMed  Google Scholar 

  46. Yirrell DL, Pickering H, Palmarini G, Hamilton L, Rutemberwa A, Biryahwaho B, Whitworth J, Brown AJ. Molecular epidemiological analysis of HIV in sexual networks in Uganda. AIDS 1998; 12(3): 285–290

    CAS  PubMed  Google Scholar 

  47. Ng KT, Ng KY, Chen JH, Ng OT, Kamarulzaman A, Tee KK. HIV-1 transmission networks among men who have sex with men in Asia. Clin Infect Dis 2014; 59(6): 910–911

    PubMed  Google Scholar 

  48. Mehta SR, Wertheim JO, Brouwer KC, Wagner KD, Chaillon A, Strathdee S, Patterson TL, Rangel MG, Vargas M, Murrell B, Garfein R, Little SJ, Smith DM. HIV transmission networks in the San Diego-Tijuana Border Region. EBioMedicine 2015; 2(10): 1456–1463

    PubMed  PubMed Central  Google Scholar 

  49. Oster AM, Wertheim JO, Hernandez AL, Ocfemia MC, Saduvala N, Hall HI. Using molecular HIV surveillance data to understand transmission between subpopulations in the United States. J Acquir Immune Defic Syndr 2015; 70(4): 444–451

    PubMed  PubMed Central  Google Scholar 

  50. Ragonnet-Cronin M, Hu YW, Morris SR, Sheng Z, Poortinga K, Wertheim JO. HIV transmission networks among transgender women in Los Angeles County, CA, USA: a phylogenetic analysis of surveillance data. Lancet HIV 2019; 6(3): e164–e172

    PubMed  PubMed Central  Google Scholar 

  51. Li X, Liu H, Liu L, Feng Y, Kalish ML, Ho SYW, Shao Y. Tracing the epidemic history of HIV-1 CRF01_AE clusters using near-complete genome sequences. Sci Rep 2017; 7(1): 4024

    PubMed  PubMed Central  Google Scholar 

  52. Li Z, He X, Wang Z, Xing H, Li F, Yang Y, Wang Q, Takebe Y, Shao Y. Tracing the origin and history of HIV-1 subtype B′ epidemic by near full-length genome analyses. AIDS 2012; 26(7): 877–884

    CAS  PubMed  Google Scholar 

  53. Ye J, Lu H, Su X, Xin R, Bai L, Xu K, Yu S, Feng X, Yan H, He X, Zeng Y. Phylogenetic and temporal dynamics of human immunodeficiency virus type 1B in China: four types of B strains circulate in China. AIDS Res Hum Retroviruses 2014; 30(9): 920–926

    PubMed  PubMed Central  Google Scholar 

  54. Meng Z, Xin R, Zhong P, Zhang C, Abubakar YF, Li J, Liu W, Zhang X, Xu J. A new migration map of HIV-1 CRF07_BC in China: analysis of sequences from 12 provinces over a decade. PLoS One 2012; 7(12): e52373

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen X, Ye M, Pang W, Smith DM, Zhang C, Zheng YT. First appearance of HIV-1 CRF07_BC and CRF08_BC outside China. AIDS Res Hum Retroviruses 2017; 33(1): 74–76

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Han X, Takebe Y, Zhang W, An M, Zhao B, Hu Q, Xu J, Wu H, Wu J, Lu L, Chen X, Liang S, Wang Z, Yan H, Fu J, Cai W, Zhuang M, Liao C, Shang H. A large-scale survey of CRF55_01B from men-who-have-sex-with-men in China: implying the evolutionary history and public health impact. Sci Rep 2015; 5(1): 18147

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Han X, An M, Zhang M, Zhao B, Wu H, Liang S, Chen X, Zhuang M, Yan H, Fu J, Lu L, Cai W, Takebe Y, Shang H. Identification of 3 distinct HIV-1 founding strains responsible for expanding epidemic among men who have sex with men in 9 Chinese cities. J Acquir Immune Defic Syndr 2013; 64(1): 16–24

    PubMed  PubMed Central  Google Scholar 

  58. An M, Han X, Xu J, Chu Z, Jia M, Wu H, Lu L, Takebe Y, Shang H. Reconstituting the epidemic history of HIV strain CRF01_AE among men who have sex with men (MSM) in Liaoning, northeastern China: implications for the expanding epidemic among MSM in China. J Virol 2012; 86(22): 12402–12406

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Li X, Xue Y, Lin Y, Gai J, Zhang L, Cheng H, Ning Z, Zhou L, Zhu K, Vanham G, Kang L, Wang Y, Zhuang M, Pan Q, Zhong P. Evolutionary dynamics and complicated genetic transmission network patterns of HIV-1 CRF01_AE among MSM in Shanghai, China. Sci Rep 2016; 6(1): 34729

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhu Z, Hu Y, Xing W, Guo M, Zhao R, Han S, Wu B. Identifying symptom clusters among people living with HIV on antiretroviral therapy in China: a network analysis. J Pain Symptom Manage 2019; 57(3): 617–626

    PubMed  Google Scholar 

  61. Zhang Z, Dai L, Jiang Y, Feng K, Liu L, Xia W, Yu F, Yao J, Xing W, Sun L, Zhang T, Wu H, Su B, Qiu M. Transmission network characteristics based on env and gag sequences from MSM during acute HIV-1 infection in Beijing, China. Arch Virol 2017; 162(11): 3329–3338

    CAS  PubMed  Google Scholar 

  62. Li X, Zhu K, Xue Y, Wei F, Gao R, Duerr R, Fang K, Li W, Song Y, Du G, Yan W, Musa TH, Ge Y, Ji Y, Zhong P, Wei P. Multiple introductions and onward transmission of HIV-1 subtype B strains in Shanghai, China. J Infect 2017; 75(2): 160–168

    PubMed  Google Scholar 

  63. Chen M, Ma Y, Chen H, Dai J, Dong L, Yang C, Li Y, Luo H, Zhang R, Jin X, Yang L, Cheung AKL, Jia M, Song Z. HIV-1 genetic transmission networks among men who have sex with men in Kunming, China. PLoS One 2018; 13(4): e0196548

    PubMed  PubMed Central  Google Scholar 

  64. Shao Y. AIDS molecular network research and AIDS precision prevention and control. 2018 National Conference on HIV and Hepatitis C Prevention and Treatment. April 19, 2018

  65. Wang X, He X, Zhong P, Liu Y, Gui T, Jia D, Li H, Wu J, Yan J, Kang D, Han Y, Li T, Yang R, Han X, Chen L, Zhao J, Xing H, Liang S, He J, Yan Y, Xue Y, Zhang J, Zhuang X, Liang S, Bao Z, Li T, Zhuang D, Liu S, Han J, Jia L, Li J, Li L. Phylodynamics of major CRF01_AE epidemic clusters circulating in mainland of China. Sci Rep 2017; 7(1): 6330

    PubMed  PubMed Central  Google Scholar 

  66. Valverde EE, Oster AM, Xu S, Wertheim JO, Hernandez AL. HIV transmission dynamics among foreign-born persons in the United States. J Acquir Immune Defic Syndr 2017; 76(5): 445–452

    PubMed  PubMed Central  Google Scholar 

  67. Campbell EM, Jia H, Shankar A, Hanson D, Luo W, Masciotra S, Owen SM, Oster AM, Galang RR, Spiller MW, Blosser SJ, Chapman E, Roseberry JC, Gentry J, Pontones P, Duwve J, Peyrani P, Kagan RM, Whitcomb JM, Peters PJ, Heneine W, Brooks JT, Switzer WM. Detailed transmission network analysis of a large opiate-driven outbreak of HIV infection in the United States. J Infect Dis 2017; 216(9): 1053–1062

    PubMed  PubMed Central  Google Scholar 

  68. Poon AFY, Gustafson R, Daly P, Zerr L, Demlow SE, Wong J, Woods CK, Hogg RS, Krajden M, Moore D, Kendall P, Montaner JSG, Harrigan PR. Near real-time monitoring of HIV transmission hotspots from routine HIV genotyping: an implementation case study. Lancet HIV 2016; 3(5): e231–e238

    PubMed  PubMed Central  Google Scholar 

  69. Pasquale DK, Doherty IA, Sampson LA, Hué S, Leone PA, Sebastian J, Ledford SL, Eron JJ, Miller WC, Dennis AM. Leveraging phylogenetics to understand HIV transmission and partner notification networks. J Acquir Immune Defic Syndr 2018; 78(4): 367–375

    PubMed  PubMed Central  Google Scholar 

  70. Avila D, Keiser O, Egger M, Kouyos R, Böni J, Yerly S, Klimkait T, Vernazza PL, Aubert V, Rauch A, Bonhoeffer S, Günthard HF, Stadler T, Spycher BD; Swiss HIV Cohort Study. Social meets molecular: combining phylogenetic and latent class analyses to understand HIV-1 transmission in Switzerland. Am J Epidemiol 2014; 179(12): 1514–1525

    PubMed  Google Scholar 

  71. Wertheim JO, Kosakovsky Pond SL, Forgione LA, Mehta SR, Murrell B, Shah S, Smith DM, Scheffler K, Torian LV. Social and genetic networks of HIV-1 transmission in New York City. PLoS Pathog 2017; 13(1): e1006000

    PubMed  PubMed Central  Google Scholar 

  72. Kostaki EG, Nikolopoulos GK, Pavlitina E, Williams L, Magiorkinis G, Schneider J, Skaathun B, Morgan E, Psichogiou M, Daikos GL, Sypsa V, Smyrnov P, Korobchuk A, Malliori M, Hatzakis A, Friedman SR, Paraskevis D. Molecular analysis of human immunodeficiency virus type 1 (HIV-1)-infected individuals in a network-based intervention (Transmission Reduction Intervention Project): phylogenetics identify HIV-1-infected individuals with social links. J Infect Dis 2018; 218(5): 707–715

    PubMed  PubMed Central  Google Scholar 

  73. Leigh Brown AJ, Lycett SJ, Weinert L, Hughes GJ, Fearnhill E, Dunn DT; UK HIV Drug Resistance Collaboration. Transmission network parameters estimated from HIV sequences for a nationwide epidemic. J Infect Dis 2011; 204(9): 1463–1469

    PubMed  PubMed Central  Google Scholar 

  74. France AM, Panneer N, Ocfemia CB, Saduvala N, Campbell E, Switzer WM, Wertheim J, Oster AM. Rapidly growing HIV transmission clusters in the Unites States, 2013–2016. 2018 Conference on Retroviruses and Opportunistic Infections. March 4–7, 2018

  75. Wertheim JO, Oster AM, Switzer WM, Zhang C, Panneer N, Campbell E, Saduvala N, Johnson JA, Heneine W. Natural selection favoring more transmissible HIV detected in United States molecular transmission network. Nat Commun 2019; 10(1): 5788

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Peters PJ, Pontones P, Hoover KW, Patel MR, Galang RR, Shields J, Blosser SJ, Spiller MW, Combs B, Switzer WM, Conrad C, Gentry J, Khudyakov Y, Waterhouse D, Owen SM, Chapman E, Roseberry JC, McCants V, Weidle PJ, Broz D, Samandari T, Mermin J, Walthall J, Brooks JT, Duwve JM; Indiana HIV Outbreak Investigation Team. HIV infection linked to injection use of oxymorphone in Indiana, 2014–2015. N Engl J Med 2016; 375(3): 229–239

    CAS  Google Scholar 

  77. Monterosso A, Minnerly S, Goings S, Morris A, France AM, Dasgupta S, Oster AM, Fanning M. Identifying and investigating a rapidly growing HIV transmission cluster in Texas. Conference on Retroviruses and Opportunistic Infections. March 8, 2017. Seattle, Washington

  78. Shang H, Xu J, Han X, Spero Li J, Arledge KC, Zhang L. HIV prevention: bring safe sex to China. Nature 2012; 485(7400): 576–577

    CAS  PubMed  Google Scholar 

  79. Wertheim JO, Murrell B, Mehta SR, Forgione LA, Kosakovsky Pond SL, Smith DM, Torian LV. Growth of HIV-1 molecular transmission clusters in New York City. J Infect Dis 2018; 218(12): 1943–1953

    PubMed  PubMed Central  Google Scholar 

  80. Mehta SR, Murrell B, Anderson CM, Kosakovsky Pond SL, Wertheim JO, Young JA, Freitas L, Richman DD, Mathews WC, Scheffler K, Little SJ, Smith DM. Using HIV sequence and epidemiologic data to assess the effect of self-referral testing for acute HIV infection on incident diagnoses in San Diego, California. Clin Infect Dis 2016; 63(1): 101–107

    PubMed  PubMed Central  Google Scholar 

  81. Heesterbeek H, Anderson RM, Andreasen V, Bansal S, De Angelis D, Dye C, Eames KT, Edmunds WJ, Frost SD, Funk S, Hollingsworth TD, House T, Isham V, Klepac P, Lessler J, Lloyd-Smith JO, Metcalf CJ, Mollison D, Pellis L, Pulliam JR, Roberts MG, Viboud C; Isaac Newton Institute IDD Collaboration. Modeling infectious disease dynamics in the complex landscape of global health. Science 2015; 347(6227): aaa4339

    PubMed  PubMed Central  Google Scholar 

  82. Stadler T, Kouyos R, von Wyl V, Yerly S, Böni J, Bürgisser P, Klimkait T, Joos B, Rieder P, Xie D, Günthard HF, Drummond AJ, Bonhoeffer S; Swiss HIV Cohort Study. Estimating the basic reproductive number from viral sequence data. Mol Biol Evol 2012; 29(1): 347–357

    CAS  PubMed  Google Scholar 

  83. Turk T, Bachmann N, Kadelka C, Büni J, Yerly S, Aubert V, Klimkait T, Battegay M, Bernasconi E, Calmy A, Cavassini M, Furrer H, Hoffmann M, Günthard HF, Kouyos RD, Aubert V, Battegay M, Bernasconi E, Böni J, Braun DL, Bucher HC, Calmy A, Cavassini M, Ciuffi A, Dollenmaier G, Egger M, Elzi L, Fehr J, Fellay J, Furrer H, Fux CA, Günthard HF, Haerry D, Hasse B, Hirsch HH, Hoffmann M, Hösli I, Kahlert C, Kaiser L, Keiser O, Klimkait T, Kouyos RD, Kovari H, Ledergerber B, Martinetti G, Martinez de Tejada B, Marzolini C, Metzner KJ, Müller N, Nicca D, Pantaleo G, Paioni P, Rauch A, Rudin C, Scherrer AU, Schmid P, Speck R, Stöckle M, Tarr P, Trkola A, Vernazza P, Wandeler G, Weber R, Yerly S. Assessing the danger of self-sustained HIV epidemics in heterosexuals by population based phylogenetic cluster analysis. eLife, 2017, 6: e28721

    PubMed  PubMed Central  Google Scholar 

  84. France AM, Oster AM. The promise and complexities of detecting and monitoring HIV transmission clusters. J Infect Dis 2019 Apr 27. [Epub ahead of print] doi: https://doi.org/10.1093/infdis/jiz177

  85. Novitsky V, Moyo S, Lei Q, DeGruttola V, Essex M. Impact of sampling density on the extent of HIV clustering. AIDS Res Hum Retroviruses 2014; 30(12): 1226–1235

    PubMed  PubMed Central  Google Scholar 

  86. Chaillon A, Delaugerre C, Brenner B, Armero A, Capitant C, Nere ML, Leturque N, Pialoux G, Cua E, Tremblay C, Smith DM, Goujard C, Meyer L, Molina JM, Chaix ML. In-depth sampling of high-risk populations to characterize HIV transmission epidemics among young MSM using PrEP in France and Quebec. Open Forum Infect Dis 2019; 6(3): ofz080

    PubMed  PubMed Central  Google Scholar 

  87. Kosakovsky Pond SL, Weaver S, Leigh Brown AJ, Wertheim JO. HIV-TRACE (Transmission Cluster Engine): a tool for large scale molecular epidemiology of HIV-1 and other rapidly evolving pathogens. Mol Biol Evol 2018; 35(7): 1812–1819

    PubMed  PubMed Central  Google Scholar 

  88. Dennis AM, Pasquale DK, Billock R, Beagle S, Mobley V, Cope A, Kuruc J, Sebastian J, Walworth C, Leone PA. Integration of contact tracing and phylogenetics in an investigation of acute HIV infection. Sex Transm Dis 2018; 45(4): 222–228

    PubMed  PubMed Central  Google Scholar 

  89. Fitzmaurice AG, Linley L, Zhang C, Watson M, France AM, Oster AM. Novel method for rapid detection of spatiotemporal HIV clusters potentially warranting intervention. Emerg Infect Dis 2019; 25(5): 988–991

    PubMed  PubMed Central  Google Scholar 

  90. Hightower GK, May SJ, Pérez-Santiago J, Pacold ME, Wagner GA, Little SJ, Richman DD, Mehta SR, Smith DM, Pond SL. HIV-1 clade B pol evolution following primary infection. PLoS One 2013; 8(6): e68188

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hemelaar J, Elangovan R, Yun J, Dickson-Tetteh L, Fleminger I, Kirtley S, Williams B, Gouws-Williams E, Ghys PD; WHO-UNAIDS Network for HIV Isolation Characterisation. Global and regional molecular epidemiology of HIV-1, 1990–2015: a systematic review, global survey, and trend analysis. Lancet Infect Dis 2019; 19(2): 143–155

    PubMed  Google Scholar 

  92. Bbosa N, Kaleebu P, Ssemwanga D. HIV subtype diversity worldwide. Curr Opin HIV AIDS 2019; 14(3): 153–160

    PubMed  Google Scholar 

  93. Fabeni L, Alteri C, Berno G, Scutari R, Orchi N, De Carli G, Bertoli A, Carioti L, Gori C, Forbici F, Salpini R, Vergori A, Gagliardini R, Cicalini S, Mondi A, Pinnetti C, Mazzuti L, Turriziani O, Colafigli M, Borghi V, Montella F, Pennica A, Lichtner M, Girardi E, Andreoni M, Mussini C, Antinori A, Ceccherini-Silberstein F, Perno CF, Santoro MM4; SENDIH Study group. Characterisation of HIV-1 molecular transmission clusters among newly diagnosed individuals infected with non-B subtypes in Italy. Sex Transm Infect 2019; 95 (8): 619–625

    PubMed  Google Scholar 

  94. Bon I, Ciccozzi M, Zehender G, Biagetti C, Verrucchi G, Lai A, Lo Presti A, Gibellini D, Re MC. HIV-1 subtype C transmission network: the phylogenetic reconstruction strongly supports the epidemiological data. J Clin Virol 2010; 48(3): 212–214

    PubMed  Google Scholar 

  95. Parczewski M, Leszczyszyn-Pynka M, Bander D, Urbanska A, Boroć-Kaczmarska A. HIV-1 subtype D infections among Caucasians from Northwestern Poland—phylogenetic and clinical analysis. PLoS One 2012; 7(2): e31674

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Mehta SR, Schairer C, Little S. Ethical issues in HIV phylogenetics and molecular epidemiology. Curr Opin HIV AIDS 2019; 14(3): 221–226

    PubMed  PubMed Central  Google Scholar 

  97. Prosperi MC, De Luca A, Di Giambenedetto S, Bracciale L, Fabbiani M, Cauda R, Salemi M. The threshold bootstrap clustering: a new approach to find families or transmission clusters within molecular quasispecies. PLoS One 2010; 5(10): e13619

    PubMed  PubMed Central  Google Scholar 

  98. Vrbik I, Stephens DA, Roger M, Brenner BG. The Gap Procedure: for the identification of phylogenetic clusters in HIV-1 sequence data. BMC Bioinformatics 2015; 16(1): 355

    PubMed  PubMed Central  Google Scholar 

  99. Kosakovsky Pond SL, Weaver S, Leigh Brown AJ, Wertheim JO. HIV-TRACE (TRAnsmission Cluster Engine): a tool for large scale molecular epidemiology of HIV-1 and other rapidly evolving pathogens. Mol Biol Evol 2018; 35(7): 1812–1819

    PubMed  PubMed Central  Google Scholar 

  100. Hué S, Clewley JP, Cane PA, Pillay D. HIV-1 pol gene variation is sufficient for reconstruction of transmissions in the era of antiretroviral therapy. AIDS 2004; 18(5): 719–728

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Mega-Projects of the National Science Research for the 13th Five-Year Plan (No. 2017ZX10201101), Innovation Team Development Program of the Ministry of Education (No. IRT_16R70), the National Natural Science Foundation of China (No. 81871637), and Central Public-interest Scientific Institution Basal Research Fund (No. 2018PT-31042).

Author information

Authors and Affiliations

  1. Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, 110001, China

    Xiaoxu Han, Bin Zhao, Minghui An, Ping Zhong & Hong Shang

  2. Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China

    Xiaoxu Han, Bin Zhao, Minghui An & Hong Shang

  3. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China

    Xiaoxu Han, Bin Zhao, Minghui An & Hong Shang

  4. Department of AIDS and STD, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China

    Ping Zhong

Authors
  1. Xiaoxu Han
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Bin Zhao
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Minghui An
    View author publications

    You can also search for this author inPubMed Google Scholar

  4. Ping Zhong
    View author publications

    You can also search for this author inPubMed Google Scholar

  5. Hong Shang
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Hong Shang.

Ethics declarations

Xiaoxu Han, Bin Zhao, Minghui An, Ping Zhong, and Hong Shang declare no conflicts of interest. This manuscript is a review article and does not entail a research protocol requiring approval by the relevant institutional review board or ethics committee.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Zhao, B., An, M. et al. Molecular network-based intervention brings us closer to ending the HIV pandemic. Front. Med. 14, 136–148 (2020). https://doi.org/10.1007/s11684-020-0756-y

Download citation

  • Received: 18 July 2019

  • Accepted: 13 February 2020

  • Published: 23 March 2020

  • Issue Date: April 2020

  • DOI: https://doi.org/10.1007/s11684-020-0756-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • human immunodeficiency virus type 1
  • molecular cluster
  • transmission cluster
  • risk network
  • targeted intervention
  • evaluation
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature