1. MacIntyre N.R. Tissue hypoxia: implications for the respiratory clinician. Respir Care. 2014 Oct; 59 (10): 1590-1596. https://doi.org/10.4187/respcare.03357
2. MacIntyre N.R. Supporting oxygenation in acute respiratory failure. Respir Care. 2013 Jan; 58 (1): 142-150. https://doi.org/10.4187/respcare.02087. PMID: 23271824.
3. Larosa V., Remacle C. Insights into the respiratory chain and oxidative stress. Biosci Rep. 2018 Oct 2;38(5):BSR20171492. https://doi.org/10.1042/BSR20171492. PMID: 30201689; PMCID: PMC6167499
4. Fernie A.R., Carrari F., Sweetlove L.J. Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol. 2004 Jun; 7 (3): 254-261. https://doi.org/10.1016/j.pbi.2004.03.007. PMID: 15134745
5. Оковитый С. В., Суханов Д. С., Заплутанов В. А., Смагина А. Н. Антигипоксанты в современной клинической практике. Клин мед. 2012; 90 (9): 63-68.
6. Маевский Е. И., Гришина Е. В., Розенфельд А. С., Зякун А. М., Верещагина В. М., Кондрашова М. Н. Анаэробное образование сукцината и облегчение его окисления - возможные механизмы адаптации клеток к кислородной недостаточности. Биофизика. 2000; 45 (3): 509-513
7. Scialo F., Daniele A., Amato F., Pastore L., Matera M.G., Cazzola M., Cas taldo G., Bianco A. The Major Cell Entry Receptor for SARS-CoV-2. Lung. 2020 Dec; 198 (6): 867-877. Epub 2020 Nov 10.
8. Vassiliou A.G., Kotanidou A., Dimopoulou I., Orfanos S.E. Endothelial Damage in Acute Respiratory Distress Syndrome. Int J Mol Sci. 2020 Nov; 21 (22): 8793. Published online 2020 Nov 20. https://doi.org/10.3390/ijms21228793
9. Ciceri F., Beretta L., Scandroglio A.M., Colombo S., Landoni G. Microvas cular COVID-19 lung vessels obstructive thromboinflammatory syn- drome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc. 2020 Apr 15. [Epub ahead of print] PMID: 32294809].
10. Mokhtari Т., Hassani F., Ghaffari N., Ebrahimi B., Yarahmadi A., Hassanzadeh G. COVID-19 and multiorgan failure: A narrative review on potential mechanisms. J Mol Histol. 2020; 51 (6): 613-628. https://doi.org/10.1007/s10735-020-09915-3
11. Лукьянова Л.Д. Сигнальные механизмы гипоксии. М.:РАН, 2019; 215.
12. Scholz R., Thurman R.G., Williamson J.R., Chance B., Bücher T. Flavin and pyridine nucleotide oxidation-reduction changes in perfused rat liver. I. Anoxia and subcellular localization of fluorescent flavoproteins. J Biol Chem. 1969 May 10; 244 (9): 2317-2324.
13. Taegtmeyer H. Metabolic responses to cardiac hypoxia. Increased pro duction of succinate by rabbit papillary muscles. Circ Res. 1978 Nov; 43 (5): 808-815. https://doi.org/10.1161/01.res.43.5.808
14. Zhang J., Wang Y.T., Miller J.H., Day M.M., Munger J.C., Brookes P.S. Accumulation of succinate in cardiac ischemia primarily occurs via canonical krebs cycle activity. Cell Rep. 2018 May 29; 23 (9): 2617-2628. https://doi.org/10.1016/j.celrep.2018.04.104
15. Chinopoulos Ch. Succinate in ischemia: Where does it come from? Int J Biochem Cell Biol. 2019 Oct; 115: 105580. https://doi.org/10.1016/j.biocel. 2019.105580
16. Chouchani E.T., Pell V.R., Gaude E., Aksentijevic D. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014 Nov 20; 515 (7527): 431-435.
17. Lodge K.M., Cowburn A.S., Li W., Condliffe A.M. The Impact of hypoxia on neutrophil degranulation and consequences for the host. Int J Mol Sci. 2020 Feb 11; 21 (4): 1183. https://doi.org/10.3390/ijms21041183
18. Delgado-Roche L., Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) Infection. Arch Med Res. 2020; 51: 384-387. https://doi.org/10.1016/j.arcmed.2020.04.019
19. Cecchini R., Cecchini A.L. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med. Hypotheses. 2020; 143: 110102. https://doi.org/10.1016/j.mehy.2020.110102
20. Fernandes I. G., de Brito C. A., Dos Reis V., Sato M. N., Pereira N. Z. SARS CoV-2 and other respiratory viruses: what does oxidative stress have to do with It? Oxid Med Cell Long. 2020, 8844280. https://doi.org/10.1155/2020/8844280
21. Badawy A.A. Immunotherapy of COVID-19 with poly (ADP-ribose) poly merase inhibitors: starting with nicotinamide. Biosci Rep. 2020; 40 (10): BSR20202856. https://doi.org/10.1042/BSR20202856
22. Badawy A.A. Immunotherapy of COVID-19 with poly (ADP-ribose) polymerase inhibitors: starting with nicotinamide. Biosci Rep. 2020 Oct 30; 40 (10): BSR20202856. https://doi.org/10.1042/BSR20202856. PMID: 33063092; PMCID: PMC7601349
23. Beltrán-García J., Osca-Verdegal R., Pallardó F.V., Ferreres J., Rodríguez M., Mulet S., Sanchis-Gomar F., Carbonell N., García-Giménez J.L. Oxidative Stress and Inflammation in COVID-19-Associated Sepsis: The Potential Role of Anti-Oxidant Therapy in Avoiding Disease Progression. Antioxidants (Basel). 2020 Sep 29; 9 (10): 936. https://doi.org/10.3390/antiox9100936. PMID: 33003552; PMCID: PMC7599810
24. Nagar H., Piao S., Kim C.-S. Role of mitochondrial oxidative stress in sepsis. Acute Crit Care. 2018; 33: 65-72. https://doi.org/10.4266/acc.2018.00157
25. Li S., Ma F., Yokota T., Garcia G. Jr., Palermo A., Wang Y., Farrell C., Wang Y.C., Wu R., Zhou Z., Pan C., Morselli M., Teitell M.A., Ryazantsev S., Fish bein G.A., Ten Hoeve J., Arboleda V.A., Bloom J., Dillon B.J., Pellegrini M., Lusis A.J., Graeber T.G., Arumugaswami V., Deb A. Metabolic reprogramming and epigenetic changes of vital organs in SARS-CoV-2 induced systemic toxicity. JCI Insight. 2020 Dec 7: 145027. https://doi.org/10.1172/jci.insight.145027. Epub ahead of print. PMID: 33284134
26. Dikalov S.I., Nazarewicz R.R. Angiotensin II-Induced Production of mitochondrial reactive oxygen species: potential mechanisms and relevance for cardiovascular disease. Antioxid. Redox Signal. 2013; 19: 1085-1094. https://doi.org/10.1089/ars.2012.4604
27. Zablocki D., Sadoshima J. Angiotensin II and Oxidative Stress in the Failing Heart. Antioxid Redox Signal. 2013; 19: 1095-1109. https://doi.org/10.1089/ars.2012.4588
28. Abouhashem A. S., Singh K., Azzazy H. M. E., Sen C. K. Is low alveolar type II cell SOD3in the lungs of elderly linked to the observed severity of COVID-19? Antioxid Redox Signal. 2020; 33 (2): 59-65. https://doi.org/10.1089/ars.2020.8111
29. Wong H.S., Dighe P.A., Mezera V., Monternier P.A., Brand M.D. Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J Biol Chem. 2017 Oct 13; 292 (41): 16804-16809. https://doi.org/10.1074/jbc.R117.789271
30. Zhang X., Zink F., Hezel F., Vogt J., Wachter U., Wepler M., Loconte M., Kranz C., Hellmann A., Mizaikoff B., Radermacher P., Hartmann C. Metabolic substrate utilization in stress-induced immune cells. Intensive Care Med Exp. 2020 Dec 18; 8 (Suppl 1): 28. https://doi.org/10.1186/s40635-020- 00316-0. PMID: 33336295; PMCID: PMC7746792
31. Schönrich G., Raftery M.J., Samstag Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Adv Biol Regul. 2020 Aug; 77: 100741. https://doi.org/10.1016/j.jbior.2020.100741. Epub 2020 Jul 4.
32. Beltrán-García J., Osca-Verdegal R., Pallardó F. V., Ferreres J., Rodríguez M., Mulet S., Sanchis-Gomar F., Carbonell N., García-Giménez J. L. Oxidative stress and inflammation in covid-19-associated sepsis: the potential role of anti-oxidant therapy in avoiding disease progression. Antioxidants (Basel). 2020; 9 (10), 936. https://doi.org/10.3390/antiox9100936
33. Bradshaw P.C., Seeds W.A., Miller A.C., Mahajan V.R., Curtis W.M. COVID-19: proposing a ketone-based metabolic therapy as a treatment to blunt the cytokine storm. Oxid Med Cell Longev. 2020 Sep 9; 2020: 6401341. https://doi.org/10.1155/2020/6401341
34. Naik E., Dixit V. M. Mitochondrial reactive oxygen species drive pro inflammatory cytokine production. The Journal of Experimental Medicine. 2011; 208 (3): 417-420. https://doi.org/10.1084/jem.20110367
35. Mittal M., Siddiqui M.R., Tran K., Reddy S.P., Malik A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014; 20: 1126-1167. https://doi.org/10.1089/ars.2012.5149
36. Supinski G.S., Callahan L.A. Diaphragm weakness in mechanically ventilated critically ill patients. Crit Care. 2013; 17 (3): R120. https://doi.org/10.1186/cc12792
37. Demoule A., Jung B., Prodanovic H. Diaphragm dysfunction on admission to the intensive care unit. Prevalence, risk factors, and prognostic im pact-a prospective study. Am J Respir Crit Care Med. 2013;188 (2): 213-219.
38. Dres M., Dube B.P., Mayaux J. Coexistence and impact of limb muscle and diaphragm weakness at time of liberation from mechanical ventilation in medical intensive care unit patients. Am J Respir Crit Care Med. 2017; 195 (3): 57-66. https://doi.org/10.1164/rccm.201602-0367OC.
39. Supinski G.S., Morris P.E., Dhar S., Callahan L.A. Diaphragm dysfunction in critical illness. Chest. 2018 Apr; 153 (4): 1040-1051. https://doi.org/10.1016/j.chest.2017.08.1157
40. Wang T., Xu Y.Q., Yuan Y.X. et al. Succinate induces skeletal muscle fiber remodeling via SUNCR1 signaling [published correction appears in EMBO Rep. 2020 May 6; 21 (5): e50461. https://doi.org/10.15252/embr.201947892
41. Зрячкин Н.И., Чудакова Т.К. Эффективность реамберина в инфузионной терапии ацетонемического синдрома у детей с острыми респираторными вирусными инфекциями. Экспериментальная и клиническая фармакология. 2013; 76 (6): 41-44.
42. Пшениснов К.В., Александрович Ю.С. Применение растворов сукцината в комплексной интенсивной терапии диабетического кетоацидоза у детей (случай из практики). Медицинский алфавит. 2014; 2 (9): 32-36.
43. Михайлова Е.В., Данилов А.Н., Чудакова Т.К., Романовская А.В., Дубовицкая Н.А. Острые респираторные вирусные инфекции у детей: клиника, гемореологические нарушения и методы их коррекции. Экспериментальная и клиническая фармакология. 2013; 76 (3): 19-22.
44. Михайлова Е.В., Чудакова Т.К. Грипп у детей. Гематологические показатели интоксикации, детоксикационная терапия. Экспериментальная и клиническая фармакология. 2015; 78 (5): 33-36. [Mik hajlova E.V., Chudakova T.K. Gripp u detej. Gematologicheskie pokazateli intoksikatsii, detoksikatsionnaya terapiya. Eksperimental'naya i Klini cheskaya Farmakologiya. 2015; 78 (5): 33-36.
45. Александрович Ю.С., Юрьев О.В., Пшениснов К.В., Красносельский К.Ю. Интраоперационая коррекция нарушений температурного гомеостаза у детей. Эксперим. клин. фармакология. 2012; 75 (5): 39-43. PMID: 22834129
46. Красносельский К.Ю., Александрович Ю.С., Гордеев В.И., Лосев Н.А. О возможности управления интраоперационной терморегуляцией. Анестезиология и реаниматология. 2007; 3: 33-35. PMID: 17684988
47. Орлов Ю.П., Лукач В.Н., Филиппов С.И., Глущенко А.В., Малюк А.И., Притыкина Т.В., Пархоменко К.К., Петрова Ю.В. Эффективность и безопасность сбалансированного раствора с антиоксидантной направленностью реамберин в интенсивной терапии перитонита и острой кишечной непроходимости. Хирургия. Журнал им. Н.И. Пирогова. 2012; (2): 64-69.
48. Сурина-Марышева Е.Ф., Кривохижина Л.В., Кантюков С.А., Сергиенко В.И., Ермолаева Е.Н., Смирнов Д.М. Влияние церулоплазмина на количество и резистентность эритроцитов при физической нагрузке. Бюл эксперим биол. 2009; 148: 8: 151-153.
49. Protti A., Carré J., Frost M.T., Taylor V., Stidwill R., Rudiger A., Singer M. Succinate recovers mitochondrial oxygen consumption in septic rat skeletal muscle. Crit Care Med. 2007 Sep; 35 (9): 2150-2155. https://doi.org/10.1097/01.ccm.0000281448.00095.4d. PMID: 17855829
50. Афанасьев В.В. Клиническая фармакология реамберина (очерк): пособие для врачей; Министерство здравоохранения и соц. раз вития Рос. Федерации, ГУ Ин-т токсикологии, С.-Петерб. гос. мед. акад. последиплом. образования. СПб.: 2005.
51. Needham D.M. A quantitative study of succinic acid in muscle. Glutamic and aspartic acids as precursors. Biochem J. 1930; 24 (1): 208-227.
52. Needham D.M. A quantitative study of succinic acid in muscle. II: The metabolic relationships of succinic, malic and fumaric acids. Biochem J. 1927; 21 (3): 739-750. https://doi.org/10.1042/bj0210739
53. Reddy A., Bozi L.H.M., Yaghi O.K., Mills E.L., Xiao H., Nicholson H.E., Paschini M., Paulo J.A., Garrity R., Laznik-Bogoslavski D., Ferreira J.C.B., Carl C.S., Sjøberg K.A., Wojtaszewski J.F.P., Jeppesen J.F., Kiens, B. Gygi S.P., Richter E.A., Mathis D., Chouchani E.T. pH-gated succinate secretion regulates muscle remodeling in response to exercise. Cell. https://doi.org/10.1016/j.cell.2020.08.039
54. Starling S. Succinate regulates muscle exercise adaptations. Nat Rev Endocrinol. 2020 Dec; 16 (12): 678-679. https://doi.org/10.1038/s41574-020-00429-2