Ecological Model Explaining the Psychosocial Adaptation to COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instrument
2.3. Procedure
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
- Psychosocial adaptation to COVID-19 should be understood within an ecological perspective, influenced by individual, social and contextual factors;
- Psychosocial adaptation to COVID-19 is influenced by sociodemographic factors, health and lifestyles, behaviors and attitudes face COVID-19, lockdown experience, and housing conditions/location;
- In general, women, older people, and those with lower levels of education have greater difficulty in adapting to the challenges posed by the pandemic;
- The results obtained are relevant information for mental health prevention and adjustment to the COVID-19 pandemic and can be considered for other global stressful events and changes;
- The whole population would benefit from multidisciplinary and multisectoral intervention aiming at promoting well-being and adaptation to the new reality.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, D.; Chen, Y.; He, K.; Zhang, T.; Tan, M.; Zhang, Y.; Zhang, X. Influence of socio-ecological factors on COVID-19 risk: A cross-sectional study based on 178 countries/regions worldwide. medRxiv 2020, 1–35. [Google Scholar] [CrossRef]
- Eaton, L.A.; Kalichman, S.C. Social and behavioral health responses to COVID-19: Lessons learned from four decades of an HIV pandemic. J. Behav. Med. 2020, 43, 341–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hradsky, O.; Komarek, A. Demographic and public health characteristics explain large part of variability in COVID-19 mortality across countries. Eur. J. Public Health 2021, 31, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.H.; Marek, J.; Nálevka, P. Sleep pattern in the US and 16 European countries during the COVID-19 outbreak using crowdsourced smartphone data. Eur. J. Public Health 2021, 31, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Bouey, J. Strengthening China’s public health response system: From SARS to COVID-19. Am. J. Public Health 2020, 110, 939–940. [Google Scholar] [CrossRef] [PubMed]
- Modig, K.; Ahlbom, A.; Ebeling, M. Excess mortality from COVID-19: Weekly excess death rates by age and sex for Sweden and its most affected region. Eur. J. Public Health 2021, 31, 17–22. [Google Scholar] [CrossRef]
- Eurofund. COVID-19: Implications for Employment and Working Life; Publications Office of the European Union: Luxembourg, 2021.
- Collins, C.; Landivar, L.C.; Ruppanner, L.; Scarborough, W.J. COVID-19 and the gender gap in work hours. Gend. Work Organ. 2020, 28, 101–112. [Google Scholar] [CrossRef]
- Whenam, C.; Smith, J.; Morgan, R. COVID-19: The gendered impacts of the outbreak. Lancet 2020, 395, 846–848. [Google Scholar] [CrossRef] [Green Version]
- Gaspar, T.; Paiva, T.; Matos, M.G. Impact of COVID-19 in Global Health and Psychosocial Risks at Work. J. Occup. Environ. Med. 2021, 63, 581–587. [Google Scholar] [CrossRef]
- Gurvich, C.; Thomas, N.; Thomas, E.H.; Hudaib, A.R.; Sood, L.; Fabiatos, K.; Sutton, K.; Isaacs, A.; Arunogiri, S.; Sharp, G.; et al. Coping styles and mental health in response to societal changes during the COVID-19 pandemic. Int. J. Soc. Psychiatry 2020, 67, 540–549. [Google Scholar] [CrossRef]
- Hou, F.; Bi, F.; Jiao, R.; Luo, D.; Song, K. Gender differences of depression and anxiety among social media users during the COVID-19 outbreak in China: A cross-sectional study. BMC Public Health 2020, 20, 1648. [Google Scholar] [CrossRef] [PubMed]
- Paiva, T.; Bentes, C.; Pereira, C.; Feliciano, A.; Luzeiro, I.; Pereira, I.; Moreira, S.; Pimentel, J.; Carreiro, A.; Lino, A.; et al. Sleep disorder patients during COVID19: Preliminary results from a collaborative Portuguese network of Sleep Laboratories. J. Sleep Res. 2020, 29, 345–346. [Google Scholar]
- Paiva, T.; Reis, C.; Feliciano, A.; Canas-Simião, H.; Machado, M.A.; Gaspar, T.; Tomé, G.; Branquinho, C.; Silva, M.R.; Ramiro, L.; et al. Sleep and Awakening Quality during COVID-19 Confinement: Complexity and Relevance for Health and Behavior. Int. J. Environ. Res. Public Health 2021, 18, 3506. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, V.; Gadi, N.; Spihlman, A.P.; Wu, S.C.; Choi, C.H.; Moulton, V.R. Aging, immunity, and COVID-19: How age influences the host immune response to coronavirus infections? Front. Physiol. 2021, 11, 1793. [Google Scholar] [CrossRef]
- Barber, S.J.; Kim, H. COVID-19 worries and behavior changes in older and younger men and women. J. Gerontol. B Psychol. Sci. Soc. Sci. 2020, 76, 17–23. [Google Scholar] [CrossRef]
- Fabiani, M.; Mateo-Urdiales, A.; Andrianou, X.; Bella, A.; Del Manso, M.; Bellino, S.; Rota, M.C.; Boros, S.; Vescio, M.F.; D’Ancona, F.P.; et al. Epidemiological characteristics of COVID-19 cases in non-Italian nationals notified to the Italian surveillance system. Eur. J. Public Health 2021, 31, 37–44. [Google Scholar] [CrossRef]
- Klaiber, P.; Wen, J.H.; DeLongis, A.; Sin, N.L. The ups and downs of daily life during COVID-19: Age differences in affect, stress, and positive events. J. Gerontol. B Psychol. Sci. Soc. Sci. 2021, 76, e30–e37. [Google Scholar] [CrossRef]
- Wolf, M.S.; Serper, M.; Opsasnick, L.; O’Conor, R.M.; Curtis, L.; Benavente, J.Y.; Wismer, G.; Batio, S.; Eifler, M.; Zheng, P.; et al. Awareness, attitudes, and actions related to COVID-19 among adults with chronic conditions at the onset of the US outbreak: A cross-sectional survey. Ann. Intern. Med. 2020, 173, 100–109. [Google Scholar] [CrossRef] [Green Version]
- Stolz, E.; Mayerl, H.; Freidl, W. The impact of COVID-19 restriction measures on loneliness among older adults in Austria. Eur. J. Public Health 2021, 31, 44–49. [Google Scholar] [CrossRef]
- Matthay, E.C.; Duchowny, K.A.; Riley, A.R.; Galea, S. Projected All-Cause Deaths Attributable to COVID-19–Related Unemployment in the United States. Am. J. Public Health 2021, 111, 696–699. [Google Scholar] [CrossRef]
- McCaffery, K.J.; Dodd, R.H.; Cvejic, E.; Ayrek, J.; Batcup, C.; Isautier, J.M.; Copp, T.; Bonner, C.; Pickles, K.; Nickel, B.; et al. Health literacy and disparities in COVID-19–related knowledge, attitudes, beliefs and behaviors in Australia. Public Health Res. Pract. 2020, 30, 30342012. [Google Scholar] [CrossRef]
- Shi, C.; Guo, Z.; Luo, C.; Lei, C.; Li, P. The Psychological Impact and Associated Factors of COVID-19 on the General Public in Hunan, China. Risk Manag. Healthc. Policy 2020, 13, 3187–3199. [Google Scholar] [CrossRef]
- Wang, C.; Pan, R.; Wan, X.; Tan, Y.; Xu, L.; Ho, C.S.; Ho, R.C. Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China. Int. J. Environ. Res. Public Health 2020, 17, 1729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Rey, R.; Garrido-Hernansaiz, H.; Collado, S. Psychological impact and associated factors during the initial stage of the coronavirus (COVID-19) pandemic among the general population in Spain. Front. Physiol. 2020, 11, 1540. [Google Scholar] [CrossRef]
- Canas-Simião, H.; Reis, C.; Carreiras, D.; Espada-Santos, P.; Paiva, T. Health-related behaviors and perceived addiction of depressed and healthy people during the COVID-19 pandemic. J. Nerv. Ment. Dis. 2022. [Google Scholar] [CrossRef] [PubMed]
- Casagrande, M.; Favieri, F.; Tambelli, R.; Forte, G. The enemy who sealed the world: Effects quarantine due to the COVID-19 on sleep quality, anxiety, and psychological distress in the Italian population. Sleep Med. 2020, 75, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Kandiah, J.; Saiki, D.; Jones, J.A. Eating behaviors of American adults during the COVID-19 pandemic. JMRI 2021, 5, e000248. [Google Scholar] [CrossRef]
- Poelman, M.P.; Gillebaart, M.; Schlinkert, C.; Dijkstra, S.C.; Derksen, E.; Mensink, F.; Hermans, C.J.R.; Aardeningm, P.; de Ridder, D.; de Vet, E. Eating behavior and food purchases during the COVID-19 lockdown: A cross-sectional study among adults in the Netherlands. Appetite 2021, 157, 105002. [Google Scholar] [CrossRef]
- Stockwell, S.; Trott, M.; Tully, M.; Shin, J.; Barnett, Y.; Butler, L.; McDermott, D.; Schuch, F.; Smith, L. Changes in physical activity and sedentary behaviors from before to during the COVID-19 pandemic lockdown: A systematic review. BMJ Open SEM 2021, 7, e000960. [Google Scholar] [CrossRef]
- Hargreaves, E.A.; Lee, C.; Jenkins, M.; Calverley, J.R.; Hodge, K.; Houge, S. Changes in Physical Activity Pre-, During and Post-lockdown COVID-19 Restrictions in New Zealand and the Explanatory Role of Daily Hassles. Front. Psychol. 2021, 12, 410. [Google Scholar] [CrossRef]
- Grossman, E.R.; Benjamin-Neelon, S.E.; Sonnenschein, S. Alcohol Consumption during the COVID-19 Pandemic: A Cross-Sectional Survey of US Adults. Int. J. Environ. Res. Public Health 2020, 17, 9189. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Li, M.; Li, Z.; Xiang, W.; Yuan, Y.; Liu, Y.; Li, Z.; Xiong, Z. Coping style, social support and psychological distress in the general Chinese population in the early stages of the COVID-19 epidemic. BMC Psychiatry 2020, 20, 426. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, Z.F. Impact of the COVID-19 Pandemic on Mental Health and Quality of Life among Local Residents in Liaoning Province, China: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2020, 17, 2381. [Google Scholar] [CrossRef] [Green Version]
- Arslan, G.; Yıldırım, M.; Tanhan, A.; Bulus, M.; Allen, K.A. Coronavirus stress, optimism-pessimism, psychological inflexibility, and psychological health: Psychometric properties of the Coronavirus Stress Measure. Int. J. Ment. Health Addict. 2020, 19, 2423–2439. [Google Scholar] [CrossRef] [PubMed]
- Dawson, D.L.; Golijani-Moghaddam, N. COVID-19: Psychological flexibility, coping, mental health, and wellbeing in the UK during the pandemic. J. Context. Behav. Sci. 2020, 17, 126–134. [Google Scholar] [CrossRef]
- Shah, S.U.; Loo, E.X.L.; Chua, C.E.; Kew, G.S.; Demutska, A.; Quek, S.; Wong, S.; Lau, H.X.; Low, E.X.S.; Loh, T.L.; et al. Association between well-being and compliance with COVID-19 preventive measures by healthcare professionals: A cross-sectional study. PLoS ONE 2021, 16, e0252835. [Google Scholar] [CrossRef]
- Yue, S.; Zhang, J.; Cao, M.; Chen, B. Knowledge, attitudes and practices of COVID-19 among urban and rural residents in China: A cross-sectional study. J. Community Health 2021, 46, 286–291. [Google Scholar] [CrossRef]
- Wu, C. Social capital and COVID-19: A multidimensional and multilevel approach. Chin. Sociol. Rev. 2021, 53, 27–54. [Google Scholar] [CrossRef]
- Volk, A.A.; Brazil, K.J.; Franklin-Luther, P.; Dane, A.V.; Vaillancourt, T. The influence of demographics and personality on COVID-19 coping in young adults. Pers. Individ. Differ. 2021, 168, 110398. [Google Scholar] [CrossRef]
- Galea, S.; Vaughan, R. Preparing the Public Health Workforce for the Post–COVID-19 Era. Am. J. Public Health 2021, 111, 350–352. [Google Scholar] [CrossRef]
- World Health Organization. Mental Health and Psychosocial Considerations during COVID-19 Outbreak. Available online: https://www.who.int/publications/i/item/mental-health-and-psychosocial-considerations-during-the-covid-19-outbreak (accessed on 26 June 2020).
- Reichelt, M.; Makovi, K.; Sargsyan, A. The impact of COVID-19 on gender inequality in the labor market and gender-role attitudes. Eur. Soc. 2021, 23, S228–S245. [Google Scholar] [CrossRef]
- Jianguo, C.; Kenli, L.; Zhaolei, L.; Keqin, L.; Philip, Y. A Survey on Applications of Artificial Intelligence in Fighting Against COVID-19. ACM Comput. Surv. 2022, 54, 158. [Google Scholar] [CrossRef]
Range | Mean | SD | |
---|---|---|---|
Calamity Experience Checklist * | 1 (less) to 10 (high) | 4.80 | 2.05 |
Healthy | 0 (no) and 1 (yes) | 0.29 | 0.45 |
Insomnia | 0 (no) and 1 (yes) | 0.19 | 0.39 |
Sadness | 0 (no) and 1 (yes) | 0.0 | 0.29 |
Nervousness | 0 (no) and 1 (yes) | 0.12 | 0.33 |
Burnout | 0 (no) and 1 (yes) | 0.11 | 0.32 |
Fatigue | 0 (no) and 1 (yes) | 0.07 | 0.26 |
Morbidities Worse with COVID-19 | 0 (no) and 1 (yes) | 0.26 | 0.44 |
Morbidities Better with COVID-19 | 0 (no) and 1 (yes) | 0.38 | 0.49 |
Sleep Quality | 1 (less) to 10 (high) | 5.70 | 2.18 |
Nightmares | 0 (no) and 1 (yes) | 0.26 | 0.44 |
Physical Activity | 0 (no) and 1 (yes) | 0.28 | 0.45 |
Fruit & vegetables | 0 (no) and 1 (yes) | 0.67 | 0.47 |
Processed Food | 0 (no) and 1 (yes) | 0.74 | 0.44 |
Sweets | 0 (no) and 1 (yes) | 0.87 | 0.34 |
Alcohol Dependence | 1 (less) to 10 (high) | 1.47 | 1.16 |
TV Dependence | 1 (less) to 10 (high) | 3.33 | 2.08 |
SN Dependence | 1 (less) to 10 (high) | 3.64 | 2.38 |
Work intensity with COVID-19 | 0 (less or equal) and 1 (higher) | 0.48 | 0.50 |
Negative attitudes | 0 (no) and 1 (yes) | 0.11 | 0.31 |
Positive attitudes | 0 (no) and 1 (yes) | 0.10 | 0.30 |
Negative behaviors | 0 (no) and 1 (yes) | 0.14 | 0.35 |
Positive Behaviors | 0 (no) and 1 (yes) | 0.16 | 0.37 |
Lockdown—fed up/tired | 0 (no) and 1 (yes) | 0.42 | 0.49 |
Lockdown—cannot stand | 0 (no) and 1 (yes) | 0.06 | 0.24 |
Lockdown—loneliness | 0 (no) and 1 (yes) | 0.12 | 0.33 |
Lockdown—unexpected conflicts | 0 (no) and 1 (yes) | 0.08 | 0.28 |
Lockdown—stress/fears/worries | 0 (no) and 1 (yes) | 0.03 | 0.18 |
Lockdown—Location House | 1 (City) and 2 (Rural/village) | 1.26 | 0.44 |
Unstandardised Coefficients | Standardised Coefficients | ||||
---|---|---|---|---|---|
B | SE | β | t | ||
(Constant) | 3.616 | 0.364 | 9.935 *** | ||
Socio demographic | Age | −0.005 | 0.003 | −0.031 | −1.767 (n.s.) |
Gender | 0.269 | 0.066 | 0.061 | 4.052 *** | |
Education Level | −0.120 | 0.063 | −0.028 | −1.900 * | |
Marital status | 0.111 | 0.064 | 0.026 | 1.748 (n.s.) | |
Health related | Healthy | −0.239 | 0.182 | −0.055 | −1.311 (n.s.) |
Insomnia | −0.064 | 0.082 | −0.012 | −0.782 (n.s.) | |
Sadness | 0.617 | 0.113 | 0.082 | 5.452 *** | |
Nervousness | 0.411 | 0.098 | 0.065 | 4.187 *** | |
Burnout | 0.701 | 0.095 | 0.115 | 7.357 *** | |
Fatigue | 0.179 | 0.114 | 0.023 | 1.562 (n.s.) | |
Morbidities Worse with COVID-19 | 0.531 | 0.069 | 0.116 | 7.679 *** | |
Morbidities Better with COVID-19 | 0.069 | 0.072 | 0.014 | 0.968 (n.s.) | |
Lifestyle | Sleep Quality | −0.210 | 0.015 | −0.224 | −13.757 *** |
Nightmares | 0.456 | 0.070 | 0.100 | 6.492 *** | |
Physical Activity | −0.158 | 0.062 | −0.036 | −2.523 ** | |
Fruit & vegetables | 0.110 | 0.062 | 0.025 | 1.781 (n.s.) | |
Processed Food | 0.189 | 0.073 | 0.038 | 2.576 ** | |
Sweets | 0.236 | 0.090 | 0.037 | 2.625 ** | |
Alcohol Dependence | 0.147 | 0.026 | 0.082 | 5.710 *** | |
TV Dependence | 0.067 | 0.016 | 0.067 | 4.296 *** | |
SN Dependence | 0.090 | 0.014 | 0.104 | 6.274 *** | |
Work intensity with COVID-19 | 0.270 | 0.060 | 0.066 | 4.529 *** | |
Attitudes and behaviors | Negative attitudes | 0.079 | 0.122 | 0.013 | 0.643 (n.s.) |
Positive attitudes | −0.499 | 0.097 | −0.076 | −5.115 *** | |
Negative behaviors | 0.060 | 0.088 | 0.010 | 0.684 (n.s.) | |
Positive Behaviors | −0.254 | 0.078 | −0.047 | −3.247 *** | |
Experience lockdown | Lockdown—fed up/tired | 0.551 | 0.063 | 0.134 | 8.773 *** |
Lockdown—cannot stand | 0.513 | 0.135 | 0.061 | 3.807 *** | |
Lockdown—loneliness | 0.465 | 0.097 | 0.077 | 4.804 *** | |
Lockdown—unexpected conflicts | 0.656 | 0.109 | 0.096 | 5.991 *** | |
Lockdown—stress/fears/worries | 0.620 | 0.160 | 0.055 | 3.865 *** | |
Housing/ geography | Lockdown—Location House | 0.182 | 0.066 | 0.038 | 2.752 ** |
Female | Male | |||||||
---|---|---|---|---|---|---|---|---|
Unstandardised Coefficients | Standardised Coefficients | Unstandardised Coefficients | Standardised Coefficients | |||||
B | SE | β | t | B | SE | β | t | |
(Constant) | 4.251 | 0.407 | 10.457 *** | 3.619 | 0.601 | 6.027 *** | ||
Age | −0.002 | 0.004 | −0.013 | −0.592 (n.s.) | −0.009 | 0.004 | −0.060 | −2.060 * |
Education Level | −0.168 | 0.076 | −0.041 | −2.192 * | −0.028 | 0.114 | −0.006 | −0.247 (n.s.) |
Marital status | 0.054 | 0.075 | 0.013 | 0.720 (n.s.) | 0.288 | 0.123 | 0.062 | 2.336 * |
Healthy | −0.274 | 0.218 | −0.065 | −1.259 (n.s.) | −0.350 | 0.335 | −0.079 | −1.044 (n.s.) |
Insomnia | −0.043 | 0.097 | −0.009 | −0.440 (n.s.) | −0.070 | 0.162 | −0.012 | −0.432 (n.s.) |
Sadness | 0.627 | 0.130 | 0.091 | 4.828 *** | 0.414 | 0.238 | 0.046 | 1.738 (n.s.) |
Nervousness | 0.384 | 0.111 | 0.067 | 3.466 *** | 0.535 | 0.224 | 0.065 | 2.388 * |
Burnout | 0.594 | 0.114 | 0.102 | 5.202 *** | 0.900 | 0.176 | 0.137 | 5.115 *** |
Fatigue | 0.148 | 0.129 | 0.021 | 1.150 (n.s.) | 0.373 | 0.262 | 0.036 | 1.422 (n.s.) |
Morbidities Worse with COVID-19 | 0.484 | 0.082 | 0.111 | 5.875 *** | 0.699 | 0.129 | 0.139 | 5.427 *** |
Morbidities Better with COVID-19 | 0.050 | 0.090 | 0.010 | 0.556 (n.s.) | 0.107 | 0.119 | 0.022 | 0.898(n.s.) |
Sleep Quality | −0.188 | 0.019 | −0.206 | −10.107 *** | −0.234 | 0.028 | −0.240 | −8.495 *** |
Nightmares | 0.460 | 0.082 | 0.108 | 5.643 *** | 0.546 | 0.143 | 0.098 | 3.818 *** |
Physical Activity | −0.175 | 0.079 | −0.039 | −2.211 * | −0.129 | 0.102 | −0.031 | −1.264 (n.s.) |
Fruit & vegetables | 0.123 | 0.073 | 0.030 | 1.677 (n.s.) | 0.127 | 0.118 | 0.026 | 1.075 (n.s.) |
Processed Food | 0.235 | 0.089 | 0.049 | 2.629 ** | 0.092 | 0.129 | 0.018 | 0.715 (n.s.) |
Sweets | 0.328 | 0.112 | 0.052 | 2.919 ** | 0.033 | 0.151 | 0.005 | 0.218 (n.s.) |
Alcohol Dependence | 0.129 | 0.034 | 0.067 | 3.778 *** | 0.163 | 0.039 | 0.103 | 4.140 *** |
TV Dependence | 0.044 | 0.019 | 0.047 | 2.374 * | 0.109 | 0.029 | 0.103 | 3.779 *** |
SN Dependence | 0.095 | 0.017 | 0.115 | 5.508 *** | 0.089 | 0.026 | 0.097 | 3.370 *** |
Work intensity with COVID-19 | 0.232 | 0.072 | 0.058 | 3.207 *** | 0.313 | 0.107 | 0.074 | 2.925 ** |
Negative attitudes | 0.197 | 0.141 | 0.035 | 1.393 (n.s.) | −0.197 | 0.253 | −0.026 | −0.779 (n.s.) |
Positive attitudes | −0.647 | 0.126 | −0.097 | −5.151 *** | −0.279 | 0.155 | −0.047 | −1.802 (n.s.) |
Negative behaviors | 0.083 | 0.105 | 0.015 | 0.789 (n.s.) | −0.023 | 0.162 | −0.004 | −0.144 (n.s.) |
Positive Behaviors | −0.336 | 0.097 | −0.063 | −3.481 *** | −0.109 | 0.135 | −0.020 | −0.806 (n.s.) |
Lockdown—fed up/tired | 0.496 | 0.077 | 0.124 | 6.468 *** | 0.616 | 0.111 | 0.149 | 5.575 *** |
Lockdown—cannot stand | 0.555 | 0.156 | 0.072 | 3.564 *** | 0.490 | 0.276 | 0.048 | 1.771 (n.s.) |
Lockdown—loneliness | 0.333 | 0.112 | 0.060 | 2.968 ** | 0.864 | 0.196 | 0.124 | 4.415 *** |
Lockdown—unexpected conflicts | 0.555 | 0.129 | 0.086 | 4.310 *** | 0.841 | 0.212 | 0.110 | 3.955 *** |
Lockdown—stress/fears/worries | 0.718 | 0.178 | 0.071 | 4.038 *** | 0.093 | 0.393 | 0.006 | 0.236 (n.s.) |
Lockdown—Location House | 0.122 | 0.081 | 0.027 | 1.509 (n.s.) | 0.306 | 0.116 | 0.064 | 2.635 ** |
Until 35 Years | Between 36 and 64 Years | 65 Years or More | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Unstandardised Coefficients | Standardised Coefficients | Unstandardised Coefficients | Standardised Coefficients | Unstandardised Coefficients | Standardised Coefficients | |||||||
B | SE | β | t | B | SE | β | t | B | SE | β | t | |
(Constante) | 3.869 | 0.678 | 5.706 | 3.116 | 0.389 | 8.015 *** | 1.017 | 1.672 | 0.608 (n.s.) | |||
Gender | 0.253 | 0.145 | 0.053 | 1.739 (n.s.) | 0.237 | 0.081 | 0.054 | 2.940 ** | 0.361 | 0.223 | 0.095 | 1.617 (n.s.) |
Education Level | 0.154 | 0.133 | 0.035 | 1.150 (n.s.) | −0.159 | 0.080 | −0.034 | −1.991 * | −0.412 | 0.252 | −0.085 | −1.637 (n.s.) |
Marital status | 0.158 | 0.123 | 0.039 | 1.290 (n.s.) | 0.100 | 0.082 | 0.022 | 1.228 (n.s.) | −0.171 | 0.234 | −0.040 | −0.731 (n.s.) |
Healthy | 0.461 | 0.252 | 0.058 | 1.832 (n.s.) | 0.632 | 0.133 | 0.087 | 4.742 *** | 0.052 | 0.450 | 0.007 | 0.116 (n.s.) |
Insomnia | 0.313 | 0.142 | 0.072 | 2.205 * | 0.615 | 0.085 | 0.134 | 7.275 *** | 0.468 | 0.258 | 0.098 | 1.810 (n.s.) |
Sadness | −0.876 | 0.332 | −0.220 | −2.637 ** | 0.031 | 0.224 | 0.007 | 0.138 (n.s.) | 2.380 | 1.496 | 0.542 | 1.590 (n.s.) |
Nervousness | −0.029 | 0.183 | −0.005 | −0.160 (n.s.) | −0.122 | 0.098 | −0.024 | −1.249 (n.s.) | 0.022 | 0.316 | 0.004 | 0.069 (n.s.) |
Burnout | 0.381 | 0.187 | 0.069 | 2.033 * | 0.508 | 0.123 | 0.079 | 4.132 *** | 0.367 | 0.429 | 0.048 | 0.856 (n.s.) |
Fatigue | 0.639 | 0.198 | 0.107 | 3.233 *** | 0.682 | 0.115 | 0.114 | 5.934 *** | 1.081 | 0.412 | 0.149 | 2.624 ** |
Morbidities Worse with COVID−19 | 0.153 | 0.283 | 0.017 | 0.540 (n.s.) | 0.112 | 0.132 | 0.016 | 0.847 (n.s.) | 0.989 | 0.481 | 0.116 | 2.058 * |
Morbidities Better with COVID-19 | 0.191 | 0.170 | 0.034 | 1.123 (n.s.) | 0.051 | 0.085 | 0.010 | 0.599 (n.s.) | 0.005 | 0.232 | 0.001 | 0.021 (n.s.) |
Sleep Quality | −0.277 | 0.032 | −0.297 | −8.590 *** | −0.182 | 0.019 | −0.195 | −9.693 *** | −0.210 | 0.051 | −0.237 | −4.112 *** |
Nightmares | 0.278 | 0.131 | 0.069 | 2.129 * | 0.578 | 0.089 | 0.121 | 6.493 *** | 0.513 | 0.288 | 0.099 | 1.785 (n.s.) |
Physical Activity | 0.015 | 0.124 | 0.004 | 0.119 (n.s.) | −0.192 | 0.079 | −0.042 | −2.420 * | −0.271 | 0.196 | −0.071 | −1.382 (n.s.) |
Fruit & vegetables | 0.187 | 0.128 | 0.044 | 1.458 (n.s.) | 0.046 | 0.076 | 0.011 | 0.607 (n.s.) | 0.372 | 0.206 | 0.094 | 1.806 (n.s.) |
Processed Food | 0.283 | 0.200 | 0.043 | 1.415 (n.s.) | 0.188 | 0.085 | 0.039 | 2.225 * | −0.001 | 0.196 | 0.000 | −0.003 (n.s.) |
Sweets | 0.312 | 0.194 | 0.050 | 1.611 (n.s.) | 0.299 | 0.112 | 0.047 | 2.677 ** | −0.343 | 0.256 | −0.067 | −1.337 (n.s.) |
Alcohol Dependence | 0.148 | 0.055 | 0.082 | 2.682 ** | 0.142 | 0.032 | 0.078 | 4.454 *** | 0.117 | 0.083 | 0.078 | 1.408 (n.s.) |
TV Dependence | 0.035 | 0.029 | 0.040 | 1.224 (n.s.) | 0.082 | 0.020 | 0.081 | 4.199 *** | 0.078 | 0.062 | 0.075 | 1.250 (n.s.) |
SN Dependence | 0.097 | 0.027 | 0.119 | 3.624 *** | 0.089 | 0.018 | 0.098 | 5.049 *** | 0.073 | 0.064 | 0.070 | 1.145 (n.s.) |
Work intensity with COVID-19 | 0.300 | 0.121 | 0.076 | 2.477 ** | 0.261 | 0.073 | 0.064 | 3.592 *** | −0.058 | 0.249 | −0.012 | −0.232 (n.s.) |
Negative attitudes | 0.015 | 0.237 | 0.003 | 0.063 (n.s.) | 0.186 | 0.150 | 0.029 | 1.235 (n.s.) | −0.590 | 0.606 | −0.060 | −0.974 (n.s.) |
Positive attitudes | −0.821 | 0.219 | −0.115 | −3.741 *** | −0.456 | 0.118 | −0.072 | −3.864 *** | −0.011 | 0.298 | −0.002 | −0.037 (n.s.) |
Negative behaviors | −0.001 | 0.146 | 0.000 | −0.004 (n.s.) | 0.147 | 0.118 | 0.022 | 1.244 (n.s.) | 0.300 | 0.362 | 0.047 | 0.829 (n.s.) |
Positive Behaviors | −0.160 | 0.161 | −0.030 | −0.996 (n.s.) | −0.345 | 0.098 | −0.062 | −3.508 *** | 0.093 | 0.234 | 0.021 | 0.397 (n.s.) |
Lockdown—fed up/tired | 0.473 | 0.129 | 0.120 | 3.663 *** | 0.552 | 0.077 | 0.134 | 7.193 *** | 0.739 | 0.211 | 0.189 | 3.504 *** |
Lockdown—cannot stand | 0.339 | 0.244 | 0.050 | 1.390 (n.s.) | 0.610 | 0.173 | 0.067 | 3.524 *** | 1.227 | 0.552 | 0.125 | 2.223 * |
Lockdown—loneliness | 0.528 | 0.171 | 0.106 | 3.094 ** | 0.419 | 0.125 | 0.066 | 3.346 *** | 0.530 | 0.395 | 0.073 | 1.343 (n.s.) |
Lockdown—unexpected conflicts | 0.619 | 0.206 | 0.104 | 3.006 ** | 0.604 | 0.134 | 0.088 | 4.494 *** | 1.457 | 0.644 | 0.122 | 2.263 (n.s.) |
Lockdown—stress/fears/worries | 0.940 | 0.375 | 0.075 | 2.508 * | 0.608 | 0.185 | 0.057 | 3.284 *** | −0.052 | 0.777 | −0.004 | −0.067 (n.s.) |
Lockdown—Location House | 0.243 | 0.147 | 0.049 | 1.653 (n.s.) | 0.116 | 0.080 | 0.025 | 1.447 (n.s.) | 0.404 | 0.208 | 0.100 | 1.941 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaspar, T.; Paiva, T.; Matos, M.G. Ecological Model Explaining the Psychosocial Adaptation to COVID-19. Int. J. Environ. Res. Public Health 2022, 19, 5159. https://doi.org/10.3390/ijerph19095159
Gaspar T, Paiva T, Matos MG. Ecological Model Explaining the Psychosocial Adaptation to COVID-19. International Journal of Environmental Research and Public Health. 2022; 19(9):5159. https://doi.org/10.3390/ijerph19095159
Chicago/Turabian StyleGaspar, Tânia, Teresa Paiva, and Margarida Gaspar Matos. 2022. "Ecological Model Explaining the Psychosocial Adaptation to COVID-19" International Journal of Environmental Research and Public Health 19, no. 9: 5159. https://doi.org/10.3390/ijerph19095159
APA StyleGaspar, T., Paiva, T., & Matos, M. G. (2022). Ecological Model Explaining the Psychosocial Adaptation to COVID-19. International Journal of Environmental Research and Public Health, 19(9), 5159. https://doi.org/10.3390/ijerph19095159