Effectiveness and Safety of Remdesivir for the Treatment of COVID-19 Patients with Liver Cirrhosis: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Data Source
2.2. Study Setting and Population
2.3. Outcome Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Cucinotta, D.; Vanelli, M. WHO Declares COVID-19 a Pandemic. Acta Biomed. 2020, 91, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Dong, X.; Liu, G.H.; Gao, Y.D. Risk and Protective Factors for COVID-19 Morbidity, Severity, and Mortality. Clin. Rev. Allergy Immunol. 2023, 64, 90–107. [Google Scholar] [CrossRef] [PubMed]
- Mallet, V.; Beeker, N.; Bouam, S.; Sogni, P.; Pol, S.; Demosthenes Research Group. Prognosis of French COVID-19 patients with chronic liver disease: A national retrospective cohort study for 2020. J. Hepatol. 2021, 75, 848–855. [Google Scholar] [CrossRef]
- Shalimar; Elhence, A.; Vaishnav, M.; Kumar, R.; Pathak, P.; Soni, K.D.; Aggarwal, R.; Soneja, M.; Jorwal, P.; Kumar, A.; et al. Poor outcomes in patients with cirrhosis and Corona Virus Disease-19. Indian. J. Gastroenterol. 2020, 39, 285–291. [Google Scholar] [CrossRef]
- Moon, A.M.; Webb, G.J.; Aloman, C.; Armstrong, M.J.; Cargill, T.; Dhanasekaran, R.; Genesca, J.; Gill, U.S.; James, T.W.; Jones, P.D.; et al. High mortality rates for SARS-CoV-2 infection in patients with pre-existing chronic liver disease and cirrhosis: Preliminary results from an international registry. J. Hepatol. 2020, 73, 705–708. [Google Scholar] [CrossRef]
- Marjot, T.; Moon, A.M.; Cook, J.A.; Abd-Elsalam, S.; Aloman, C.; Armstrong, M.J.; Pose, E.; Brenner, E.J.; Cargill, T.; Catana, M.A.; et al. Outcomes following SARS-CoV-2 infection in patients with chronic liver disease: An international registry study. J. Hepatol. 2021, 74, 567–577. [Google Scholar] [CrossRef]
- Sarin, S.K.; Choudhury, A.; Lau, G.K.; Zheng, M.H.; Ji, D.; Abd-Elsalam, S.; Hwang, J.; Qi, X.; Cua, I.H.; Suh, J.I.; et al. Pre-existing liver disease is associated with poor outcome in patients with SARS-CoV-2 infection; The APCOLIS Study (APASL COVID-19 Liver Injury Spectrum Study). Hepatol. Int. 2020, 14, 690–700. [Google Scholar] [CrossRef]
- Iavarone, M.; D’Ambrosio, R.; Soria, A.; Triolo, M.; Pugliese, N.; Del Poggio, P.; Perricone, G.; Massironi, S.; Spinetti, A.; Buscarini, E.; et al. High rates of 30-day mortality in patients with cirrhosis and COVID-19. J. Hepatol. 2020, 73, 1063–1071. [Google Scholar] [CrossRef]
- Qi, X.; Liu, Y.; Wang, J.; Fallowfield, J.A.; Wang, J.; Li, X.; Shi, J.; Pan, H.; Zou, S.; Zhang, H.; et al. Clinical course and risk factors for mortality of COVID-19 patients with pre-existing cirrhosis: A multicentre cohort study. Gut 2021, 70, 433–436. [Google Scholar] [CrossRef]
- Philips, C.A.; Kakkar, K.; Joseph, M.; Yerol, P.K.; Ahamed, R.; Rajesh, S.; Augustine, P. Critically Ill COVID-19 Patient with Chronic Liver Disease—Insights into a Comprehensive Liver Intensive Care. J. Clin. Transl. Hepatol. 2021, 9, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Elhence, A.; Vaishnav, M.; Biswas, S.; Anand, A.; Gunjan, D.; Kedia, S.; Mahapatra, S.J.; Nayak, B.; Sheikh, S.; Soni, K.D.; et al. Predictors of in-hospital Outcomes in Patients with Cirrhosis and Coronavirus Disease-2019. J. Clin. Exp. Hepatol. 2022, 12, 876–886. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020, 30, 269–271. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health. COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines; National Institutes of Health: Bethesda, MD, USA, 2024.
- Gottlieb, R.L.; Vaca, C.E.; Paredes, R.; Mera, J.; Webb, B.J.; Perez, G.; Oguchi, G.; Ryan, P.; Nielsen, B.U.; Brown, M.; et al. Early Remdesivir to Prevent Progression to Severe COVID-19 in Outpatients. N. Engl. J. Med. 2022, 386, 305–315. [Google Scholar] [CrossRef]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the Treatment of COVID-19—Final Report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef]
- Bhimraj, A.; Morgan, R.L.; Shumaker, A.H.; Baden, L.; Cheng, V.C.C.; Edwards, K.M.; Gallagher, J.C.; Gandhi, R.T.; Muller, W.J.; Nakamura, M.M.; et al. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID-19. Clin. Infect. Dis. 2022, 78, e250–e349. [Google Scholar] [CrossRef]
- Agarwal, A.; Hunt, B.; Stegemann, M.; Rochwerg, B.; Lamontagne, F.; Siemieniuk, R.A.; Agoritsas, T.; Askie, L.; Lytvyn, L.; Leo, Y.S.; et al. A living WHO guideline on drugs for Covid-19. BMJ 2020, 370, m3379. [Google Scholar] [CrossRef]
- Update to living WHO guideline on drugs for COVID-19. BMJ 2023, 383, 2622. [CrossRef]
- Taiwan Centers for Disease Control. Publicly Funded COVID-19 Antiviral Drug VEKLURY® Receipt Plan. 2022. Available online: https://www.cdc.gov.tw/Category/MPage/Hg7o5NJJp9niFbZgYqFBEw (accessed on 7 May 2024).
- WHO Solidarity Trial Consortium. Repurposed Antiviral Drugs for COVID-19—Interim WHO Solidarity Trial Results. N. Engl. J. Med. 2021, 384, 497–511. [Google Scholar] [CrossRef]
- Siemieniuk, R.A.; Bartoszko, J.J.; Zeraatkar, D.; Kum, E.; Qasim, A.; Martinez, J.P.D.; Izcovich, A.; Lamontagne, F.; Han, M.A.; Agarwal, A.; et al. Drug treatments for COVID-19: Living systematic review and network meta-analysis. BMJ 2020, 370, m2980. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; et al. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020, 395, 1569–1578. [Google Scholar] [CrossRef] [PubMed]
- Rochwerg, B.; Agarwal, A.; Zeng, L.; Leo, Y.S.; Appiah, J.A.; Agoritsas, T.; Bartoszko, J.; Brignardello-Petersen, R.; Ergan, B.; Ge, L.; et al. Remdesivir for severe COVID-19: A clinical practice guideline. BMJ 2020, 370, m2924. [Google Scholar] [CrossRef] [PubMed]
- Ansems, K.; Grundeis, F.; Dahms, K.; Mikolajewska, A.; Thieme, V.; Piechotta, V.; Metzendorf, M.I.; Stegemann, M.; Benstoem, C.; Fichtner, F. Remdesivir for the treatment of COVID-19. Cochrane Database Syst. Rev. 2021, 8, CD014962. [Google Scholar] [CrossRef] [PubMed]
- Ader, F.; Bouscambert-Duchamp, M.; Hites, M.; Peiffer-Smadja, N.; Poissy, J.; Belhadi, D.; Diallo, A.; Le, M.P.; Peytavin, G.; Staub, T.; et al. Remdesivir plus standard of care versus standard of care alone for the treatment of patients admitted to hospital with COVID-19 (DisCoVeRy): A phase 3, randomised, controlled, open-label trial. Lancet Infect. Dis. 2022, 22, 209–221. [Google Scholar] [CrossRef]
- Kaka, A.S.; MacDonald, R.; Linskens, E.J.; Langsetmo, L.; Vela, K.; Duan-Porter, W.; Wilt, T.J. Major Update 2: Remdesivir for Adults With COVID-19: A Living Systematic Review and Meta-analysis for the American College of Physicians Practice Points. Ann. Intern. Med. 2022, 175, 701–709. [Google Scholar] [CrossRef]
- Amstutz, A.; Speich, B.; Mentre, F.; Rueegg, C.S.; Belhadi, D.; Assoumou, L.; Burdet, C.; Murthy, S.; Dodd, L.E.; Wang, Y.; et al. Effects of remdesivir in patients hospitalised with COVID-19: A systematic review and individual patient data meta-analysis of randomised controlled trials. Lancet Respir. Med. 2023, 11, 453–464. [Google Scholar] [CrossRef]
- Ali, K.; Azher, T.; Baqi, M.; Binnie, A.; Borgia, S.; Carrier, F.M.; Cavayas, Y.A.; Chagnon, N.; Cheng, M.P.; Conly, J.; et al. Remdesivir for the treatment of patients in hospital with COVID-19 in Canada: A randomized controlled trial. CMAJ 2022, 194, E242–E251. [Google Scholar] [CrossRef]
- Goldman, J.D.; Lye, D.C.B.; Hui, D.S.; Marks, K.M.; Bruno, R.; Montejano, R.; Spinner, C.D.; Galli, M.; Ahn, M.Y.; Nahass, R.G.; et al. Remdesivir for 5 or 10 Days in Patients with Severe COVID-19. N. Engl. J. Med. 2020, 383, 1827–1837. [Google Scholar] [CrossRef]
- Spinner, C.D.; Gottlieb, R.L.; Criner, G.J.; Arribas Lopez, J.R.; Cattelan, A.M.; Soriano Viladomiu, A.; Ogbuagu, O.; Malhotra, P.; Mullane, K.M.; Castagna, A.; et al. Effect of Remdesivir vs Standard Care on Clinical Status at 11 Days in Patients with Moderate COVID-19: A Randomized Clinical Trial. JAMA 2020, 324, 1048–1057. [Google Scholar] [CrossRef]
- Devgun, J.M.; Zhang, R.; Brent, J.; Wax, P.; Burkhart, K.; Meyn, A.; Campleman, S.; Abston, S.; Aldy, K.; for the Toxicology Investigators Consortium FACT Study Group. Identification of Bradycardia Following Remdesivir Administration Through the US Food and Drug Administration American College of Medical Toxicology COVID-19 Toxic Pharmacovigilance Project. JAMA Netw. Open 2023, 6, e2255815. [Google Scholar] [CrossRef]
- Touafchia, A.; Bagheri, H.; Carrie, D.; Durrieu, G.; Sommet, A.; Chouchana, L.; Montastruc, F. Serious bradycardia and remdesivir for coronavirus 2019 (COVID-19): A new safety concerns. Clin. Microbiol. Infect. 2021, 27, 791.e5–791.e8. [Google Scholar] [CrossRef]
- Montastruc, F.; Thuriot, S.; Durrieu, G. Hepatic Disorders with the Use of Remdesivir for Coronavirus 2019. Clin. Gastroenterol. Hepatol. 2020, 18, 2835–2836. [Google Scholar] [CrossRef] [PubMed]
- FDA. Approves Veklury® (Remdesivir) to Treat COVID-19 in People with Mild to Severe Hepatic Impairment with no Dose Adjustment; Gilead Science Incorporation: Foster City, CA, USA, 2023.
- Gilead Science Incorporation. Veklury (Remdesivir) EU Risk Management Plan; Gilead Science Incorporation: Foster City, CA, USA, 2023. [Google Scholar]
- Tsai, M.S.; Lin, M.H.; Lee, C.P.; Yang, Y.H.; Chen, W.C.; Chang, G.H.; Tsai, Y.T.; Chen, P.C.; Tsai, Y.H. Chang Gung Research Database: A multi-institutional database consisting of original medical records. Biomed. J. 2017, 40, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Kamath, P.S.; Wiesner, R.H.; Malinchoc, M.; Kremers, W.; Therneau, T.M.; Kosberg, C.L.; D’Amico, G.; Dickson, E.R.; Kim, W.R. A model to predict survival in patients with end-stage liver disease. Hepatology 2001, 33, 464–470. [Google Scholar] [CrossRef]
- Rubio-Rivas, M.; Corbella, X.; Formiga, F.; Menéndez Fernández, E.; Martín Escalante, M.D.; Baños Fernández, I.; Arnalich Fernández, F.; Del Corral-Beamonte, E.; Lalueza, A.; Parra Virto, A.; et al. Risk Categories in COVID-19 Based on Degrees of Inflammation: Data on More Than 17,000 Patients from the Spanish SEMI-COVID-19 Registry. J. Clin. Med. 2021, 10, 2214. [Google Scholar] [CrossRef]
- Rubio-Rivas, M.; Mora-Luján, J.M.; Formiga, F.; Arévalo-Cañas, C.; Lebrón Ramos, J.M.; Villalba García, M.V.; Fonseca Aizpuru, E.M.; Díez-Manglano, J.; Arnalich Fernández, F.; Romero Cabrera, J.L.; et al. WHO Ordinal Scale and Inflammation Risk Categories in COVID-19. Comparative Study of the Severity Scales. J. Gen. Intern. Med. 2022, 37, 1980–1987. [Google Scholar] [CrossRef]
- Grein, J.; Ohmagari, N.; Shin, D.; Diaz, G.; Asperges, E.; Castagna, A.; Feldt, T.; Green, G.; Green, M.L.; Lescure, F.X.; et al. Compassionate Use of Remdesivir for Patients with Severe COVID-19. N. Engl. J. Med. 2020, 382, 2327–2336. [Google Scholar] [CrossRef]
- Aleem, A.; Mahadevaiah, G.; Shariff, N.; Kothadia, J.P. Hepatic manifestations of COVID-19 and effect of remdesivir on liver function in patients with COVID-19 illness. Bayl. Univ. Med. Cent. Proc. 2021, 34, 473–477. [Google Scholar] [CrossRef]
- Kang, H.; Kang, C.K.; Im, J.H.; Cho, Y.; Kang, D.Y.; Lee, J.Y. Adverse Drug Events Associated with Remdesivir in Real-World Hospitalized Patients With COVID-19, Including Vulnerable Populations: A Retrospective Multicenter Study. J. Korean Med. Sci. 2023, 38, e346. [Google Scholar] [CrossRef]
- Adamo, G.; Amata, M.; Cannizzaro, N.; Chessari, C.; Sapienza, G.M.; Capizzi, G.M.; Battaglia, S.; Benfante, A.; Scichilone, N. Transient asymptomatic bradycardia and remdesivir in COVID-19 patients. Minerva Med. 2023, 114, 463–468. [Google Scholar] [CrossRef]
- Ishisaka, Y.; Aikawa, T.; Malik, A.; Kampaktsis, P.N.; Briasoulis, A.; Kuno, T. Association of Remdesivir use with bradycardia: A systematic review and meta-analysis. J. Med. Virol. 2023, 95, e29018. [Google Scholar] [CrossRef] [PubMed]
- Pantazopoulos, I.; Mavrovounis, G.; Dimeas, G.; Zikos, N.; Pitsikou, M.; Rousogianni, E.; Mermiri, M.; Michou, A.; Spanos, M.; Maniotis, C.; et al. Remdesivir-induced Bradycardia is not Associated with Worse Outcome in Patients with COVID-19: A Retrospective Analysis. Am. J. Cardiovasc. Drugs 2022, 22, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Ai, M.Y.; Chang, W.L.; Yang, C.J. Remdesivir-Induced Bradycardia and Mortality in SARS-CoV-2 Infection, Potential Risk Factors Assessment: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 7518. [Google Scholar] [CrossRef] [PubMed]
- Umeh, C.A.; Maguwudze, S.; Kaur, H.; Dimowo, O.; Naderi, N.; Safdarpour, A.; Hussein, T.; Gupta, R. Bradycardia and Outcomes in COVID-19 Patients on Remdesivir: A Multicenter Retrospective Study. Cardiol. Res. 2023, 14, 192–200. [Google Scholar] [CrossRef]
- Bajema, K.L.; Berry, K.; Streja, E.; Rajeevan, N.; Li, Y.; Mutalik, P.; Yan, L.; Cunningham, F.; Hynes, D.M.; Rowneki, M.; et al. Effectiveness of COVID-19 Treatment with Nirmatrelvir-Ritonavir or Molnupiravir Among U.S. Veterans: Target Trial Emulation Studies with One-Month and Six-Month Outcomes. Ann. Intern. Med. 2023, 176, 807–816. [Google Scholar] [CrossRef]
- Hammond, J.; Leister-Tebbe, H.; Gardner, A.; Abreu, P.; Bao, W.; Wisemandle, W.; Baniecki, M.; Hendrick, V.M.; Damle, B.; Simon-Campos, A.; et al. Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with COVID-19. N. Engl. J. Med. 2022, 386, 1397–1408. [Google Scholar] [CrossRef]
- Qiu, Y.; Wen, H.; Wang, H.; Sun, W.; Li, G.; Li, S.; Wang, Y.; Zhai, J.; Zhan, Y.; Su, Y.; et al. Real-world effectiveness and safety of nirmatrelvir-ritonavir (Paxlovid)-treated for COVID-19 patients with onset of more than 5 days: A retrospective cohort study. Front. Pharmacol. 2024, 15, 1401658. [Google Scholar] [CrossRef]
- Lam, C.; Patel, P. Nirmatrelvir-Ritonavir; StatPearls: Treasure Island, FL, USA, 2025. [Google Scholar]
- Marzolini, C.; Kuritzkes, D.R.; Marra, F.; Boyle, A.; Gibbons, S.; Flexner, C.; Pozniak, A.; Boffito, M.; Waters, L.; Burger, D.; et al. Recommendations for the Management of Drug-Drug Interactions Between the COVID-19 Antiviral Nirmatrelvir/Ritonavir (Paxlovid) and Comedications. Clin. Pharmacol. Ther. 2022, 112, 1191–1200. [Google Scholar] [CrossRef]
- Jayk Bernal, A.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martin-Quiros, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M.L.; et al. Molnupiravir for Oral Treatment of COVID-19 in Nonhospitalized Patients. N. Engl. J. Med. 2022, 386, 509–520. [Google Scholar] [CrossRef]
- Vangeel, L.; Chiu, W.; De Jonghe, S.; Maes, P.; Slechten, B.; Raymenants, J.; Andre, E.; Leyssen, P.; Neyts, J.; Jochmans, D. Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antiviral Res. 2022, 198, 105252. [Google Scholar] [CrossRef]
- Ministry of Health and Welfare. White Paper on Taiwan’s Epidemic Prevention Policy in Post-COVID-19 Era; Ministry of Health and Welfare, Taiwan Centers for Disease Control: Taipei City, Taiwan, 2024.
Non-RDSV (N = 1322) | RDSV (N = 46) | p-Value | |
---|---|---|---|
Age, years, median (IQR) | 62 (53–72) | 66.5 (56–82) | 0.042 |
Gender, male, n (%) | 924 (69.89) | 32 (69.57) | 1 |
Dexamethasone use, n (%) | 53 (4.01) | 31 (67.39) | <0.001 |
Oxygen use, n (%) | 426 (32.22) | 26 (56.52) | 0.001 |
Initial vital signs | |||
BT, °C, median (IQR) | 36.5 (36–37.1) | 37.4 (36.8–38.2) | <0.001 |
SBP, mmHg, median (IQR) | 134.5 (115–155) | 132.5 (110.5–146.5) | 0.381 |
DBP, mmHg, median (IQR) | 75 (65–87) | 76.5 (70–85) | 0.716 |
RR, breaths per minute, median (IQR) | 17 (16–19) | 18 (16–20) | 0.001 |
HR, bpm, median (IQR) | 96 (83–110) | 101 (91–112) | 0.032 |
SpO2, %, median (IQR) | 97 (95–98) | 96 (93–98) | 0.121 |
Initial laboratory data | |||
WBC, 1000/uL, median (IQR) | 7.1 (4.9–10.4) | 6.5 (4.5–8.4) | 0.164 |
Hb, g/dL, median (IQR) | 10.2 (8.6–12) | 11.5 (10.2–12.2) | 0.005 |
Creatinine, mg/dL, median (IQR) | 1 (0.71–1.57) | 1 (0.7–1.85) | 0.953 |
BUN, mg/dL, median (IQR) | 23.5 (15.3–39.8) | 19 (14.7–38.2) | 0.480 |
ALT, U/L, median (IQR) | 32 (20–54) | 28.5 (17–38) | 0.049 |
Bilirubin, mg/dL, median (IQR) | 1.6 (0.8–3.3) | 0.9 (0.55–1.9) | 0.015 |
Ammonia, μg/dL, median (IQR) | 102.5 (61–160) | 78 (46–141) | 0.389 |
Albumin, g/dL, median (IQR) | 3.09 (2.69–3.5) | 2.87 (2–3.25) | 0.096 |
CRP, mg/L, median (IQR) | 22.52 (7.36–70.39) | 20.28 (8.74–99.36) | 0.521 |
Glucose, mg/dL, median (IQR) | 120 (98–165) | 198.5 (127–282) | 0.012 |
Na, mEq/L, median (IQR) | 135 (131–138) | 136 (132–138) | 0.878 |
K, mEq/L, median (IQR) | 4 (3.5–4.4) | 4.1 (3.5–4.4) | 0.646 |
Troponin I, ng/mL, median (IQR) | 0.02 (0.01–0.06) | 0.03 (0.01–0.07) | 0.542 |
D-dimer, ng/mL, median (IQR) | 2606 (1174–5572) | 365 (365–365) | 0.153 |
Prothrombin time, INR, median (IQR) | 1.3 (1.2–1.5) | 1.3 (1.1–1.4) | 0.4660 |
Prognosis | |||
LOS, days, median (IQR) | 10 (6–18) | 9 (6–14) | 0.140 |
Intubation, n (%) | 191 (14.45) | 6 (13.04) | 0.958 |
ICU admission, n (%) | 115 (86.98) | <3 | 0.984 |
Mortality, n (%) | 76(5.75) | 3 (6.52) | 0.503 |
Underlying diseases | |||
Cardiovascular disease, n (%) | 33 (2.5) | 0 (0) | 1 |
Hypertension, n (%) | 648 (49.02) | 28 (60.87) | 0.153 |
Congestive heart failure, n (%) | 151 (11.42) | 10 (21.74) | 0.057 |
Cerebrovascular disease, n (%) | 198 (14.98) | 10 (21.74) | 0.295 |
Chronic pulmonary disease, n (%) | 198 (14.98) | 13 (28.26) | 0.025 |
Diabetes mellitus, n (%) | 595 (45.01) | 23 (50) | 0.604 |
Malignancy, n (%) | 687 (51.97) | 25 (54.35) | 0.867 |
Renal disease, n (%) | 384 (29.05) | 13 (28.26) | 1 |
MELD score, median (IQR) | 14.48 (10.68–19.73) | 14.41 (11.6–21.46) | 0.901 |
WHO ordinal scale, median (IQR) | 3 (3–4) | 4 (3–4) | 0.017 |
Inflammation risk categories, n (%) | 0.863 | ||
H | 494 (37.37) | 19 (41.30) | |
I | 305 (23.07) | 10 (21.74) | |
L | 523 (39.56) | 17 (36.96) |
Before RDSV | After RDSV | p-Value | |
---|---|---|---|
HR, bpm, median (IQR) | 96 (83–110) | 83 (72–96) | <0.001 |
Hb, g/dL, median (IQR) | 10.2 (8.6–12) | 9.5 (8.4–11.1) | 0.003 |
Glucose, mg/dL, median (IQR) | 198.5 (127–282) | 198.5 (114–326) | 0.795 |
Bilirubin, mg/dL, median (IQR) | 0.9 (0.55–1.9) | 0.6 (0.35–1.55) | 0.640 |
ALT, U/L, median (IQR) | 28.5 (17–38) | 34 (18–58) | 0.242 |
Prothrombin Time, INR, median (IQR) | 1.3 (1.1–1.4) | 1.3 (1.2–1.5) | 0.128 |
Ammonia, μg/dL, median (IQR) | 78 (46–141) | 90 (63–156) | 0.184 |
Albumin, g/dL, median (IQR) | 2.87 (2–3.25) | 3.18 (2.65–3.72) | 0.417 |
Creatinine, mg/dL, median (IQR) | 1 (0.7–1.85) | 0.95 (0.66–2.39) | 0.149 |
BUN, mg/dL, median (IQR) | 19 (14.7–38.2) | 29.8 (18.6–56.9) | 0.019 |
Non-RDSV (N = 39) | RDSV (N = 39) | p-Value | |
---|---|---|---|
Characteristics | |||
Age, years, median (IQR) | 67 (57–75) | 64 (53–81) | 0.853 |
Gender, male, N (%) | 26 (66.67) | 26 (66.67) | 1 |
Dexamethasone use, n (%) | 25 (64.1) | 25 (64.1) | 1 |
Oxygen use, n (%) | 15 (38.46) | 22 (56.41) | 0.174 |
MELD score, median (IQR) | 13.31 (8.73–16.81) | 14.47 (11.57–22.75) | 0.497 |
MELD-Na score, median (IQR) | 17.4 (13.47–22.3) | 16.79 (15.06–23.32) | 0.810 |
WHO ordinal scale, median (IQR) | 3 (3–4) | 4 (3–4) | 0.644 |
X-ray score | 0.416 | ||
0 | 10 | 4 | |
1 | <3 | 4 | |
2 | 20 | 23 | |
3 | <3 | <3 | |
4 | <3 | <3 | |
Outcome | |||
LOS, days, median (IQR) | 13.5 (6–22) | 9 (6–14) | 0.059 |
Intubation, n (%) | 12 (30.77) | 5 (12.82) | 0.100 |
ICU admission, n (%) | 4 (10.26%) | <3 | 0.973 |
Mortality, n (%) | 7 (17.95) | 2 (5.13) | 0.986 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, Y.-C.; Ng, C.-J.; Huang, Y.-B.; Chen, S.-Y. Effectiveness and Safety of Remdesivir for the Treatment of COVID-19 Patients with Liver Cirrhosis: A Retrospective Cohort Study. Life 2025, 15, 512. https://doi.org/10.3390/life15040512
Wong Y-C, Ng C-J, Huang Y-B, Chen S-Y. Effectiveness and Safety of Remdesivir for the Treatment of COVID-19 Patients with Liver Cirrhosis: A Retrospective Cohort Study. Life. 2025; 15(4):512. https://doi.org/10.3390/life15040512
Chicago/Turabian StyleWong, Yi-Ching, Chip-Jin Ng, Yan-Bo Huang, and Shou-Yen Chen. 2025. "Effectiveness and Safety of Remdesivir for the Treatment of COVID-19 Patients with Liver Cirrhosis: A Retrospective Cohort Study" Life 15, no. 4: 512. https://doi.org/10.3390/life15040512
APA StyleWong, Y.-C., Ng, C.-J., Huang, Y.-B., & Chen, S.-Y. (2025). Effectiveness and Safety of Remdesivir for the Treatment of COVID-19 Patients with Liver Cirrhosis: A Retrospective Cohort Study. Life, 15(4), 512. https://doi.org/10.3390/life15040512