Fc-Modified Antibody in Hospitalized Severe COVID-19 Patients
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Trial Participants
2.3. Randomization and Blinding
2.4. Efficacy and Safety Assessments
2.5. Statistical Analysis
2.6. Early Study Termination
3. Results
3.1. Trial Participants
3.2. Baseline Demographic and Clinical Characteristics
3.3. Efficacy Outcomes
3.4. Time to Clinical Improvement
3.5. All-Cause Mortality Rate
3.6. Time to SARS-CoV-2 RNA Negativity
3.7. Non-Medication Supportive Measures
3.8. Safety Outcomes
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. (In English) [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. (In English) [Google Scholar] [CrossRef] [PubMed]
- Pantaleo, G.; Correia, B.; Fenwick, C.; Joo, V.S.; Perez, L. Antibodies to combat viral infections: Development strategies and progress. Nat. Rev. Drug Discov. 2022, 21, 676–696. (In English) [Google Scholar] [CrossRef]
- Kompaniyets, L.; Pennington, A.F.; Goodman, A.B.; Rosenblum, H.G.; Belay, B.; Ko, J.Y.; Chevinsky, J.R.; Schieber, L.Z.; Summers, A.D.; Lavery, A.M.; et al. Underlying Medical Conditions and Severe Illness Among 540,667 Adults Hospitalized With COVID-19, March 2020-March 2021. Prev. Chronic Dis. 2021, 18, E66. [Google Scholar] [CrossRef]
- Pons, M.J.; Ymaña, B.; Mayanga-Herrera, A.; Sáenz, Y.; Alvarez-Erviti, L.; Tapia-Rojas, S.; Gamarra, R.; Blanco, A.B.; Moncunill, G.; Ugarte-Gil, M.F. Cytokine Profiles Associated With Worse Prognosis in a Hospitalized Peruvian COVID-19 Cohort. Front. Immunol. 2021, 12, 700921. (In English) [Google Scholar] [CrossRef]
- Bermejo-Martin, J.F.; González-Rivera, M.; Almansa, R.; Micheloud, D.; Tedim, A.P.; Domínguez-Gil, M.; Resino, S.; Martín-Fernández, M.; Ryan Murua, P.; Pérez-García, F.; et al. Viral RNA load in plasma is associated with critical illness and a dysregulated host response in COVID-19. Crit. Care 2020, 24, 691. (In English) [Google Scholar] [CrossRef]
- Li, Y.; Qi, L.; Bai, H.; Sun, C.; Xu, S.; Wang, Y.; Han, C.; Li, Y.; Liu, L.; Cheng, X.; et al. Safety, Tolerability, Pharmacokinetics, and Immunogenicity of a Monoclonal Antibody (SCTA01) Targeting SARS-CoV-2 in Healthy Adults: A Randomized, Double-Blind, Placebo-Controlled, Phase I Study. Antimicrob. Agents Chemother. 2021, 65, e0106321. [Google Scholar] [CrossRef]
- Quah, P.; Li, A.; Phua, J. Mortality rates of patients with COVID-19 in the intensive care unit: A systematic review of the emerging literature. Crit. Care 2020, 24, 285. (In English) [Google Scholar] [CrossRef]
- Schulte-Schrepping, J.; Reusch, N.; Paclik, D.; Baßler, K.; Schlickeiser, S.; Zhang, B.; Krämer, B.; Krammer, T.; Brumhard, S.; Bonaguro, L.; et al. Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment. Cell 2020, 182, 1419–1440.e23. (In English) [Google Scholar] [CrossRef]
- Lundgren, J.D.; Grund, B.; Barkauskas, C.E.; Holland, T.L.; Gottlieb, R.L.; Sandkovsky, U.; Brown, S.M.; Knowlton, K.U.; Self, W.H.; Files, D.C.; et al. A Neutralizing Monoclonal Antibody for Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 905–914. (In English) [Google Scholar] [CrossRef]
- Jacobs, J.L.; Bain, W.; Naqvi, A.; Staines, B.; Castanha, P.M.S.; Yang, H.; Boltz, V.F.; Barratt-Boyes, S.; Marques, E.T.A.; Mitchell, S.L.; et al. Severe Acute Respiratory Syndrome Coronavirus 2 Viremia Is Associated With Coronavirus Disease 2019 Severity and Predicts Clinical Outcomes. Clin. Infect. Dis. 2022, 74, 1525–1533. (In English) [Google Scholar] [CrossRef] [PubMed]
- Hogan, C.A.; Stevens, B.A.; Sahoo, M.K.; Huang, C.; Garamani, N.; Gombar, S.; Yamamoto, F.; Murugesan, K.; Kurzer, J.; Zehnder, J.; et al. High Frequency of SARS-CoV-2 RNAemia and Association With Severe Disease. Clin. Infect. Dis. 2021, 72, e291–e295. [Google Scholar] [CrossRef] [PubMed]
- Kawasuji, H.; Morinaga, Y.; Tani, H.; Yoshida, Y.; Takegoshi, Y.; Kaneda, M.; Murai, Y.; Kimoto, K.; Ueno, A.; Miyajima, Y.; et al. SARS-CoV-2 RNAemia with a higher nasopharyngeal viral load is strongly associated with disease severity and mortality in patients with COVID-19. J. Med. Virol. 2022, 94, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Ong, E.Z.; Chan, Y.F.Z.; Leong, W.Y.; Lee, N.M.Y.; Kalimuddin, S.; Haja Mohideen, S.M.; Chan, K.S.; Tan, A.T.; Bertoletti, A.; Ooi, E.E.; et al. A Dynamic Immune Response Shapes COVID-19 Progression. Cell Host Microbe 2020, 27, 879–882.e2. [Google Scholar] [CrossRef] [PubMed]
- Tixagevimab-cilgavimab for treatment of patients hospitalised with COVID-19: A randomised, double-blind, phase 3 trial. Lancet Respir. Med. 2022, 10, 972–984. [CrossRef]
- RECOVERY Collaborative Group. Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2022, 399, 665–676. (In English) [Google Scholar] [CrossRef]
- Winkler, E.S.; Gilchuk, P.; Yu, J.; Bailey, A.L.; Chen, R.E.; Chong, Z.; Zost, S.J.; Jang, H.; Huang, Y.; Allen, J.D.; et al. Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection. Cell 2021, 184, 1804–1820.e16. [Google Scholar] [CrossRef]
- Yamin, R.; Jones, A.T.; Hoffmann, H.H.; Schäfer, A.; Kao, K.S.; Francis, R.L.; Sheahan, T.P.; Baric, R.S.; Rice, C.M.; Ravetch, J.V.; et al. Fc-engineered antibody therapeutics with improved anti-SARS-CoV-2 efficacy. Nature 2021, 599, 465–470. [Google Scholar] [CrossRef]
- Lee, W.S.; Wheatley, A.K.; Kent, S.J.; DeKosky, B.J. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat. Microbiol. 2020, 5, 1185–1191. [Google Scholar] [CrossRef]
- Ajmeriya, S.; Kumar, A.; Karmakar, S.; Rana, S.; Singh, H. Neutralizing Antibodies and Antibody-Dependent Enhancement in COVID-19: A Perspective. J. Indian Inst. Sci. 2022, 102, 671–687. (In English) [Google Scholar] [CrossRef] [PubMed]
- Arvin, A.M.; Fink, K.; Schmid, M.A.; Cathcart, A.; Spreafico, R.; Havenar-Daughton, C.; Lanzavecchia, A.; Corti, D.; Virgin, H.W. A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature 2020, 584, 353–363. (In English) [Google Scholar] [CrossRef]
- Gruell, H.; Vanshylla, K.; Weber, T.; Barnes, C.O.; Kreer, C.; Klein, F. Antibody-mediated neutralization of SARS-CoV-2. Immunity 2022, 55, 925–944. (In English) [Google Scholar] [CrossRef] [PubMed]
- Lundgren, J.D.; Grund, B.; Barkauskas, C.E.; Holland, T.L.; Gottlieb, R.L.; Sandkovsky, U.; Brown, S.M.; Knowlton, K.U.; Self, W.H.; Files, D.C.; et al. Responses to a Neutralizing Monoclonal Antibody for Hospitalized Patients With COVID-19 According to Baseline Antibody and Antigen Levels: A Randomized Controlled Trial. Ann. Intern. Med. 2022, 175, 234–243. (In English) [Google Scholar] [CrossRef] [PubMed]
- Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; Consortium, C.-G.U.; et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021, 19, 409–424. [Google Scholar] [CrossRef]
- Cantini, F.; Goletti, D.; Petrone, L.; Najafi Fard, S.; Niccoli, L.; Foti, R. Immune Therapy, or Antiviral Therapy, or Both for COVID-19: A Systematic Review. Drugs 2020, 80, 1929–1946. (In English) [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group. Higher dose corticosteroids in patients admitted to hospital with COVID-19 who are hypoxic but not requiring ventilatory support (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2023, 401, 1499–1507. (In English) [Google Scholar] [CrossRef]
- Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; et al. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. (In English) [Google Scholar] [CrossRef]
- Chokkalingam, A.P.; Hayden, J.; Goldman, J.D.; Li, H.; Asubonteng, J.; Mozaffari, E.; Bush, C.; Wang, J.R.; Kong, A.; Osinusi, A.O.; et al. Association of Remdesivir Treatment With Mortality Among Hospitalized Adults with COVID-19 in the United States. JAMA Netw. Open 2022, 5, e2244505. (In English) [Google Scholar] [CrossRef]
- Grundeis, F.; Ansems, K.; Dahms, K.; Thieme, V.; Metzendorf, M.I.; Skoetz, N.; Benstoem, C.; Mikolajewska, A.; Griesel, M.; Fichtner, F.; et al. Remdesivir for the treatment of COVID-19. Cochrane Database Syst. Rev. 2023, 1, Cd014962. (In English) [Google Scholar] [CrossRef]
- Platzer, M.; Totschnig, D.; Karolyi, M.; Clodi-Seitz, T.; Wenisch, C.; Zoufaly, A. The effect of early remdesivir administration in COVID-19 disease progression in hospitalised patients. Wien. Klin. Wochenschr. 2024, 136, 458–464. [Google Scholar] [CrossRef] [PubMed]
SCTA01 15 mg/kg N = 33, n (%) | SCTA01 50 mg/kg N = 34, n (%) | Placebo N = 35, n (%) | |
---|---|---|---|
Age in years, | |||
18–49 | 19/33 (57.6) | 18/34 (52.9) | 21/35 (60.0) |
≥50 | 14/33 (42.4) | 16/34 (47.1) | 14/35 (40.0) |
Median (Min, Max) | 48.0 (1, 81) | 48.0 (30, 69) | 44.0 (18, 76) |
Gender, n (%) | |||
Male | 21/33 (63.6) | 22/34 (64.7) | 25/35 (71.4) |
Female; | 12/33 (36.4) | 12/34 (35.3) | 10/35 (28.6) |
Race or ethnic group, n (%) | |||
American Indian or Alaska Native | 2/33 (6.1) | 3/34 (8.8) | 4/35 (11.4) |
Asian | 0/33 | 1/34 (2.9) | 0/35 |
Black or African American | 5/33 (15.2) | 3/34 (8.8) | 0/35 |
White | 22/33 (66.7) | 25/34 (73.5) | 0/35 |
Hispanic or Latino | 19/33 (57.6) | 16/34 (47.1) | 18/35 (51.4) |
Not Reported or Unknown | 4/33 (12.1) | 2/34 (5.9) | 2/35 (5.7) |
BMI (kg/m2) | |||
<30 | 19/33 (57.6) | 16/34 (47.1) | 11/35 (31.4) |
≥30 | 14/33 (42.4) | 18/34 (52.9) | 24/35 (68.6) |
Mean (SD) | 30.6 (7.53) | 32.3 (8.44) | 32.4 (5.53) |
Primary diagnosis, n (%) | |||
Laboratory-confirmed SARS-CoV-2 infection | 32/33 (97.0) | 33/34 (97.1) | 34/35 (97.1) |
SpO2 ≤ 93% on room air a | 31/33 (93.9) | 31/34 (91.2) | 34/35 (97.1) |
PaO2/FiO2 < 300 mmHg | 14/33 (42.4) | 17/34 (50.0) | 15/35 (42.9) |
SpO2/FiO2 ≤ 315 mmHg | 11/33 (33.3) | 14/34 (41.2) | 13/35 (37.1) |
Lung infiltrates > 50% | 15/33 (45.5) | 15/34 (44.1) | 14/35 (40.0) |
Respiratory rate > 30 breaths/min | 6/33 (18.2) | 9/34 (26.5) | 4/35 (11.4) |
Clinical status (8-point scale), n (%) | |||
Score 5 | 32/33 (97.0) | 33/34 (97.1) | 32/35 (91.4) |
Score 6 | 1/33 (3.0) | 1/34 (2.9) | 3/35 (8.6) |
Co-existing illness, n (%) | |||
Any | 24/33 (72.7) | 23/34 (67.6) | 24/35 (68.6) |
Hypertension | 12/33 (36.4) | 10/34 (29.4) | 11/35 (31.4) |
Diabetes | 7/33 (21.2) | 4/34 (11.8) | 2/35 (5.7) |
Obesity | 6/33 (18.2) | 9/34 (26.5) | 6/35 (17.1) |
Chronic kidney disease | 1/33 (3.0) | 1/34 (2.9) | 0/35 |
Generalized anxiety disorders | 4/33 (12.1) | 1/34 (2.9) | 3/35 (8.6) |
Duration of symptoms before enrollment in days, n (%) | |||
1–7 | 5/33 (15.2) | 11/34 (32.4) | 19/35 (54.3) |
8–14 | 28/33 (84.8) | 23/34 (67.6) | 16/35 (45.7) |
Median (Min, Max) | 9.0 (1, 11) | 9.0 (1, 11) | 7.0 (1, 14) |
Baseline serostatus, n (%) | |||
Seropositive | 17/33 (51.5) | 21/34 (61.8) | 18/35 (51.4) |
Seronegative | 12/33 (36.4) | 10/34 (29.4) | 14/35 (40.0) |
Unknown | 4/33 (12.1) | 3/34 (8.8) | 3/35 (8.6) |
Medication use, n (%) | |||
Remdesivir | 4/33 (12.1) | 4/34 (11.8) | 6/35 (17.1) |
Dexamethasone | 32/33 (97.0) | 33/34 (97.1) | 35/35 (100) |
SCTA01 15 mg/kg (N = 33) | SCTA01 50 mg/kg (N = 34) | Placebo (N = 35) | |
---|---|---|---|
Primary outcome | |||
Time to clinical improvement, median (days) | 9.0 (7.0, 14.0) | 9.0 (6.0, 15.0) | 10.0 (7.0, 15.0) |
Secondary outcomes | |||
Mortality rate up to Day 29, n (%) | 2/33 (6.1) | 2/34 (5.9) | 3/35 (8.6) |
Time to SARS-CoV-2 negativity for all patients, median (days) | 14.0 (8.0, 29.0) | 28.0 (9.0, 31.0) | 27.0 (11.0, 32.0) |
** Time to SARS-CoV-2 negativity in seronegative patients, median (days) (total n = 36) | 29.0 (3, 123) | 116.0 (5, 118) | 29.0 (16, 124) |
** Time to SARS-CoV-2 negativity in seropositive patients, median (days) (total n = 56) | 13 (8, 16) | 29 (5, 31) | 15 (8, 46) |
Non-medication measures (≥1 day) | |||
Supplemental oxygen, n (%) Median (Min, Max) (days) | 8 (24.2) 6.5 (2, 10) | 11 (32.4) 3.0 (2, 16) | 10 (28.6) 9.0 (4, 21) |
Non-invasive ventilation, n (%) Median (Min, Max) (days) | 5 (15.2) 6.0 (2, 9) | 1 (2.9) 8.0 (8, 8) | 3 (8.6) 4.0 (1, 4) |
Invasive ventilation/ECMO, n (%) Median (Min, Max) (days) | 4 (12.1) 13 (3, 29) | 5 (14.7) 13 (1, 28) | 9 (25.7) 10 (3, 23) |
SCTA01 15 mg/kg N = 33, (%) | SCTA01 50 mg/kg N = 34, (%) | Placebo N = 35, (%) | |
---|---|---|---|
Any TEAEs | 18/33 (54.5) | 21/34 (61.8) | 20/35 (57.1) |
Related to the study treatment | 1/33 (3.0) | 0/34 | 0/35 |
TEAEs by maximum severity | |||
Grade 1 | 7/33 (21.2) | 13/34 (38.2) | 9/35 (25.7) |
Grade 2 | 4/33 (12.1) | 2/34 (5.9) | 6/35 (17.1) |
Grade 3 | 3/33 (9.1) | 0/34 | 3/35 (8.6) |
Grade 4 | 1/33 (3.0) | 4/34 (11.8) | 2/35 (5.7) |
Grade 5 | 3/33 (9.1) | 2/34 (5.9) | 0/35 |
Any Grade 3 or above TEAEs | 7/33 (21.2) | 6/34 (17.6) | 5/35 (14.3) |
Related to study treatment | 1/33 (3.0) | 0/34 | 0/35 |
Any TEAEs leading to study treatment discontinuation | 1/33 (3.0) | 0/34 | 0/35 |
Any TEAEs leading to study discontinuation | 2/33 (6.1) | 1/34 (2.9) | 0/35 |
Any allergic acute reactions | 0/33 | 0/34 | 0/35 |
Any Grade 3 or above serious TEAEs | 7/33 (21.2) | 5/34 (14.7) | 5/35 (14.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dal-Pizzol, F.; Lobo, S.M.; Lucasti, C.; Baidoo, A.A.H.; Su, H.; Lan, Z.; Xie, L. Fc-Modified Antibody in Hospitalized Severe COVID-19 Patients. Vaccines 2025, 13, 372. https://doi.org/10.3390/vaccines13040372
Dal-Pizzol F, Lobo SM, Lucasti C, Baidoo AAH, Su H, Lan Z, Xie L. Fc-Modified Antibody in Hospitalized Severe COVID-19 Patients. Vaccines. 2025; 13(4):372. https://doi.org/10.3390/vaccines13040372
Chicago/Turabian StyleDal-Pizzol, Felipe, Suzana Margareth Lobo, Christopher Lucasti, Adam Abdul Hakeem Baidoo, Huo Su, Zhanghua Lan, and Liangzhi Xie. 2025. "Fc-Modified Antibody in Hospitalized Severe COVID-19 Patients" Vaccines 13, no. 4: 372. https://doi.org/10.3390/vaccines13040372
APA StyleDal-Pizzol, F., Lobo, S. M., Lucasti, C., Baidoo, A. A. H., Su, H., Lan, Z., & Xie, L. (2025). Fc-Modified Antibody in Hospitalized Severe COVID-19 Patients. Vaccines, 13(4), 372. https://doi.org/10.3390/vaccines13040372