Abstract
COVID-19, the global pandemic caused by SARS-Corona virus 2 (SARS-CoV-2), recently ravaged the World with various efforts charged towards finding therapeutic drug targets for this novel virus. The identification of COVID-19 main protease (Mpro) opened the possibility of testing new families of inhibitors as potential anti-coronaviral drugs. Protein-drug interaction is of pivotal importance to understanding the structural features essential for any ligand affinity. This study evaluated the efficacy of an isolated bioactive plant compound and synthetic tetraazamacrocycles against COVID-19 Mpro by molecular docking. Molecular docking investigations were performed using PyRx, Auto Dock vina and Discovery Studio (DS) to analyze the inhibition probability of these compounds against COVID-19. COVID-19 Mpro (PDB ID: 6LU7: Resolution 2.16 Å) was docked with 1 flavonoid and 3 tetraaza-macrocyclic compounds comparatively with known anti-viral drugs (Remdesivir (REMD) and Nelfinavir (NELF)) and hydroxychloroquine (HCQ). Docking studies showed H-TEAD, 5 interacting with 5 residues having the highest binding affinity of −9.4 kcal/mol, followed by TEAD with 5 residue interactions and a binding affinity value of −9.4 kcal/mol, HA-TEAD, 7 has 5 interactions with a binding affinity of −9.3 kcal/mol, and Siam1 has 6 interactions with a binding energy of −7.8 kcal/mol. All the docked potential drugs have binding energies higher than the reference drugs HCQ, 1 and REMD, 2 connoting greater activity except NELF, 3 whose value is only lower than the 3 macrocycles (HA-TEAD, 7 and H-TEAD, 5 and TEA1, 6). They are bound through hydrogen bonds, arene-anion and arene-cation interactions. The trend of binding affinity show H-TEAD (−9.4 kcal/mol) = TEAD1 (−9.4 kcal/mol) > HA-TEAD (−9.3 kcal/mol) > NELF (−8.7 kcal/mol) > Siamone (−8.8 kcal/mol) > HCQ (−7.2 kcal/mol) > REMD (−6.2 kcal/mol) while the number of interactions shows REMD > HA-TEAD = HCQ > Siamone > NELF > H-TEAD > TEAD1. This study, hence, validates the activity of HCQ against COVID-19 and provides a foundation for advanced experimental research, to evaluate the real pharmaceutical potentials of these compounds, towards finding a cure for COVID-19 and other related diseases.
Acknowledgment
The authors acknowledge the assistance of Dr. Fortunatus Ezebuo throughout the research.
References
[1] J. Otrompke. Pharm. J. 293, 7833 (2014), https://doi.org/10.1211/PJ.2014.20066890.Search in Google Scholar
[2] World Health Organization. SARS (Severe Acute Respiratory Syndrome) (2004), https://www.who.int/ith/diseases/sars/en/ (accessed Apr 16, 2020).Search in Google Scholar
[3] J. Peiris, S. Lai, L. Poon, Y. Guan, L. Yam, W. Lim, K. Yuen. Lancet 9366(361), 1319 (2003), https://doi.org/10.1016/s0140-6736(03)13077-2.Search in Google Scholar PubMed PubMed Central
[4] P. JSM, W. Lai, P. LLM, G. Yakan, Y. LYC, W. Lim. Tepecik Dergisi 1(13), 55 (2003), https://doi.org/10.5222/terh.2003.26734.Search in Google Scholar
[5] World Health Organization. MERS Monthly Summary (2019), https://www.who.int/emergencies/mers-cov/en/ (accessed Apr 16, 2020).Search in Google Scholar
[6] Centers for Disease Control and Prevention. SARS Basics Fact Sheet (2017), https://www.cdc.gov/sars/about/fs-sars.html (accessed Apr 16, 2020).Search in Google Scholar
[7] L. L. Ren, Y. M. Wang, Z. Q. Wu, Z. C. Xiang, L. Guo, T. Xu, J. W. Wang. Chin. Med. J. 133, 1015 (2020), https://doi.org/10.1097/CM9.0000000000000722.Search in Google Scholar PubMed PubMed Central
[8] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu. Lancet 395(10223), 497 (2020), https://doi.org/10.1016/s0140-6736(20)30183-5.Search in Google Scholar
[9] W. Wang, J. Tang, F. Wei. J. Med. Virol. 92(4), 441 (2020), https://doi.org/10.1002/jmv.25689.Search in Google Scholar PubMed PubMed Central
[10] W. G. Carlos, C. S. Dela Cruz, B. Cao, S. Pasnick, S. Jamil. Am. J. Respir. Crit. Care Med. 201(4), 7 (2020), https://doi.org/10.1164/rccm.2014P7.Search in Google Scholar PubMed
[11] C. I. Paules, H. D. Marston, A. S. Fauci. JAMA 323(8), 707 (2020), https://doi.org/10.1001/jama.2020.0757.Search in Google Scholar PubMed
[12] F. Esper, Z. Ou, Y. T. Huang. J. Clin. Virol. 48(2), 131 (2010), https://doi.org/10.1016/j.jcv.2010.03.007.Search in Google Scholar PubMed PubMed Central
[13] World Health Organization, Coronavirus disease (COVID-19) pandemic, https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (accessed May 1, 2020).Search in Google Scholar
[14] World Health Organization (2020), Press conferences on COVID-19 and other global health issues, https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (accessed April 16, 2020).Search in Google Scholar
[15] E. Mahase. BMJ 368, m308 (2020), https://doi.org/10.1136/bmj.m308.Search in Google Scholar PubMed
[16] Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, Z. Feng. N. Engl. J. Med. 382, 1199 (2020), https://doi.org/10.1056/NEJMoa2001316.Search in Google Scholar PubMed PubMed Central
[17] M. L. Holshue, C. DeBolt, S. Lindquist, K. H. Lofy, J. Wiesman, H. Bruce. N. Engl. J. Med. 382(10), 929 (2020), https://doi.org/10.1056/NEJMoa2001191.Search in Google Scholar PubMed PubMed Central
[18] WHO, Coronavirus disease (COVID-19), https://www.who.int/news-room/q-a-detail/q-a-coronaviruses, https://www.cdc.gov/ (accessed May 1, 2020).Search in Google Scholar
[19] Y. Wan, J. Shang, R. Graham, R. S. Baric, F. Li. J. Virol. 94, e00127 (2020), https://doi.org/10.1128/JVI.00127-20.Search in Google Scholar PubMed PubMed Central
[20] J. A. Jaimes, J. K. Millet, A. E. Stout, N. M. Andre, G. R. Whittaker. Viruses 12(1), E83 (2020), https://doi.org/10.3390/v12010083.Search in Google Scholar PubMed PubMed Central
[21] H. Lu. Biosci. Trends 14, 69 (2020), https://doi.org/10.5582/bst.2020.01020.Search in Google Scholar PubMed
[22] N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han. Lancet 395(10223), 507 (2020).10.1016/S0140-6736(20)30211-7Search in Google Scholar PubMed PubMed Central
[23] M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu. Cell Res. 30(3), 269 (2020), https://doi.org/10.1038/s41422-020-0282-0.Search in Google Scholar PubMed PubMed Central
[24] M. Toots, J. J. Yoon, R. M. Cox, M. Hart, Z. M. Sticher, N. Makhsous. Sci. Transl. Med. 11, eaax5866 (2020), https://doi.org/10.1126/scitranslmed.aax5866.Search in Google Scholar PubMed PubMed Central
[25] D. Siegel, M. Perron, R. Bannister, H. C. Hui, N. Larson, R. Strickley, J. Wells, K. S. Stuthman, S. A. Van Tongeren, N. L. Garza, G. Donnelly, A. C. Shurtleff, C. J. Retterer, D. Gharaibeh, R. Zamani, T. Kenny, B. P. Eaton, E. Grimes, L. S. Welch, L. Gomba, C. L. Wilhelmsen, D. K. Nichols, J. E. Nuss, E. R. Nagle, J. R. Kugelman, G. Palacios, E. Doerffler, S. Neville, E. Carra, M. O. Clarke, L. Zhang, W. Lew, B. Ross, Q. Wang, K. Chun, L. Wolfe, D. Babusis, Y. K. M. ParkStray, I. Trancheva, J. Y. Feng, O. Barauskas, Y. Xu, P. Wong, M. R. Braun, M. Flint, L. K. McMullan, S. S. Chen, R. Fearns, S. Swaminathan, D. L. Mayers, C. F. Spiropoulou, W. A. Lee, S. T. Nichol, T. Cihlar, S. Bavari. Nature 531(7594), 381 (2016), https://doi.org/10.1038/nature17180.Search in Google Scholar PubMed PubMed Central
[26] S. R. Leist, K. Pyrc, J. Y. Feng, I. Trantcheva, R. Bannister, Y. Park, D. Babusis, M. O. Clarke, R. L. Mackman, J. E. Spahn, C. A. Palmiotti, D. Siegel, A. S. Ray, T. Cihlar, R. Jordan, M. R. Denison, R. S. Baric. Cell 183(4), 1070–1085.e12 (2017), https://doi.org/10.1016/j.cell.2020.09.050.Search in Google Scholar PubMed PubMed Central
[27] T. P. Sheahan, A. C. Sims, R. L. Graham, V. D. Menachery, L. E. Gralinski, J. B. Case, S. R. Leist, K. Pyrc, J. Y. Feng, I. Trantcheva, R. Bannister. Sci. Transl. Med. 9(396), eaal3653 (2017), https://doi.org/10.1126/scitranslmed.aal3653.Search in Google Scholar PubMed PubMed Central
[28] E. de Wit, F. Feldmann, J. Cronin, R. Jordan, A. Okumura, T. Thomas, D. Scott, T. Cihlar, H. Feldmann. Proc. Natl. Acad. Sci. 117, 6771 (2020), https://doi.org/10.1073/pnas.1922083117.Search in Google Scholar PubMed PubMed Central
[29] FDA Approved Drugs Products: Hydroxychloroquine Oral Tablet, PLAQUENIL® HYDROXYCHLOROQUINE SULFATE TABLETS, USP instruction manual, www.accessdata.fda.gov/drugsatfda_docs/label/2019/009768Orig1s51lbl.pdf.Search in Google Scholar
[30] S. Rampogu, M. R. Lemuel. BioMed Res. Int. 2016, 1–6 (2016), https://doi.org/10.1155/2016/6068437.Search in Google Scholar PubMed PubMed Central
[31] B. Hu, Lill M. A.. J Comp Chem 35(16), 1255–1260 (2014), https://doi.org/10.1002/jcc.23616.Search in Google Scholar PubMed PubMed Central
[32] D. Ghosh, J. Griswold, M. Erman, W. Pangborn. Nature 457(7226), 219 (2009), https://doi.org/10.1038/nature07614.Search in Google Scholar PubMed PubMed Central
[33] J. Fei, L. Zhou, T. Liu, X. Y. Tang. Int. J. Med. Sci. 10(3), 265 (2013), https://doi.org/10.7150/ijms.5344.Search in Google Scholar PubMed PubMed Central
[34] M. K. Abdel-Hamid, A. McCluskey. Molecules 19(5), 6609 (2014), https://doi.org/10.3390/molecules19056609.Search in Google Scholar PubMed PubMed Central
[35] A. Fatima, A. B. H. Abdul, R. Abdullah, R. A. Karjiban, V. S. Lee. Int. J. Mol. Sci. 16(2), 2747 (2015), https://doi.org/10.3390/ijms16022747.Search in Google Scholar PubMed PubMed Central
[36] N. K. Sharma, K. K. Jha, Priyanka. J. Adv. Sci. Res. 1, 67 (2010).Search in Google Scholar
[37] A. M. Vijesh, A. M. Isloor, S. Telkar, T. Arulmoli, F. Hoong-Kun. Arab. J. Chem. 6, 197 (2013), https://doi.org/10.1016/j.arabjc.2011.10.007.Search in Google Scholar
[38] R. Mishra, S. Mishra, J. Dash, J. Panigrahi. ChemRxiv (2020), https://doi.org/10.26434/chemrxiv.12646613.v2.Search in Google Scholar
[39] D. Gfeller, A. Grosdidier, M. Wirth, A. Daina, O. Michielin, V. Zoete. Nucleic Acids Res. 42(W1), W32 (2014), https://doi.org/10.1093/nar/gku293.Search in Google Scholar PubMed PubMed Central
[40] A. Daina, O. Michielin, V. Zoete. Nucleic Acids Res. 47(W1), W357 (2019), https://doi.org/10.1093/nar/gkz382.Search in Google Scholar PubMed PubMed Central
[41] G. Wang, D. He, X. Li, J. Li, Z. Peng. Bioorg. Chem. 65, 167 (2016), https://doi.org/10.1016/j.bioorg.2016.03.001.Search in Google Scholar PubMed
[42] I. H. R. Tomi, A. H. R. Al-Daraji, A. M. Abdula, M. F. Al-Marjani. J. Saudi Chem. Soc. 20, 509 (2016), https://doi.org/10.1016/j.jscs.2013.03.004.Search in Google Scholar
[43] G. E. Kellogg, J. C. Burnett, D. J. Abraham. J. Comput. Aided Mol. Des. 15, 381 (2001), https://doi.org/10.1023/a:1011136228678.10.1023/A:1011136228678Search in Google Scholar
[44] M. Zheng, Y. Lee, Y. Li, K. Hwangbo, C. Lee, J. Kim, J. Y. Son. Arch. Pharmacal Res. 9(33), 1307 (2010), https://doi.org/10.1007/s12272-010-0903-0.Search in Google Scholar PubMed
[45] P. O. Widiakongko, D. Alisaputra, T. Kangkamano. Proceedings of the International Conference on Science and Engineering (ICSE-UIN-SUKA 2021) (2021).Search in Google Scholar
[46] N. Malik, U. P. Dhuldhaj. Cell. Mol. Biomed. Rep. 1(3), 41 (2023), https://doi.org/10.55705/cmbr.2022.364739.1071.Search in Google Scholar
[47] S. Mishra, R. Mishra, S. Dash, J. Panigrahi. ChemRxiv. (2020), https://doi.org/10.26434/chemrxiv.12646613.v2.Search in Google Scholar
[48] S. Abubshait, H. Abubshait, R. R. Almalih, M. Gomaa, M. Nawaz, I. Ababutain, A. Alghamdi. Chemistryselect 7(46), 1–10 (2022), https://doi.org/10.1002/slct.202203925.Search in Google Scholar
[49] W. JiaXu, B. Shao, J. Li, Z. Wang, M. Zhang, L. Jia, C. Ma. J. Agric. Food Chem. 71(33), 12462 (2023), https://doi.org/10.1021/acs.jafc.2c09148.Search in Google Scholar PubMed
[50] Y. Aurora, I. Tarigan, N. Suryanto, P. Santosa, V. Pricillia, A. Parikesit. J. Fund. Appl. Sci. 18(6), 630 (2022), https://doi.org/10.11113/mjfas.v18n6.2594.Search in Google Scholar
[51] A. Swargiary, M. Daimari. Sn Appl. Sci. 3(1), 36 (2021), https://doi.org/10.1007/s42452-020-04101-2.Search in Google Scholar
[52] A. Tielens. Annu. Rev. Astron. Astrophys. 46, 289 (2008), https://doi.org/10.1146/annurev.astro.46.060407.145211.Search in Google Scholar
[53] A. Boldyrev, L. Wang. Chem. Rev. 105(10), 3716 (2005), https://doi.org/10.1021/cr030091t.Search in Google Scholar PubMed
[54] A. Shinozaki, K. Mimura, T. Nishida. Sci. Rep. 9, 7335 (2019), https://doi.org/10.1038/s41598-019-43868-2.Search in Google Scholar PubMed PubMed Central
[55] Y. Zhang, P. Chen, Y. Ma, S. He, M. Liu. ACS Appl. Mater. Interfaces 1, 2036 (2009), https://doi.org/10.1021/am900399w.Search in Google Scholar PubMed
© 2024 IUPAC & De Gruyter
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- African Early Career Chemists Workshop & 8th Annual Symposium of the American Chemical Society, Nigeria International Chapter 2023
- Conference papers
- Design and simulation of 30 000 tons per year of cumene plant from natural gas field
- Activity profiling of natural and synthetic SARS-Cov-2 inhibitors using molecular docking analysis
- Efficiency of green synthesised carbon nanotubes from Moringa oleifera leaf extract as potential toxic metals adsorbent in polluted water
- Elucidating the interaction of FCC catalyst components: the discrete roles of matrix and binder on zeolite structure
- Coconut shell-derived green synthesised carbon nanotubes for clean-up of crude oil spills
- Electrodeposition behaviour of samarium in 1,3-dimethyl-2-imidazolidone solvent
- Special topic paper
- Importance of dielectric friction effect on polyelectrolytes conductivity
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- African Early Career Chemists Workshop & 8th Annual Symposium of the American Chemical Society, Nigeria International Chapter 2023
- Conference papers
- Design and simulation of 30 000 tons per year of cumene plant from natural gas field
- Activity profiling of natural and synthetic SARS-Cov-2 inhibitors using molecular docking analysis
- Efficiency of green synthesised carbon nanotubes from Moringa oleifera leaf extract as potential toxic metals adsorbent in polluted water
- Elucidating the interaction of FCC catalyst components: the discrete roles of matrix and binder on zeolite structure
- Coconut shell-derived green synthesised carbon nanotubes for clean-up of crude oil spills
- Electrodeposition behaviour of samarium in 1,3-dimethyl-2-imidazolidone solvent
- Special topic paper
- Importance of dielectric friction effect on polyelectrolytes conductivity