Clinical Course and Mortality Predictors in Adult Hospitalized Patients with COVID-19 Infection—A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Datadot. (n.d.). COVID-19 Deaths|WHO COVID-19 Dashboard. Available online: https://data.who.int/dashboards/covid19/deaths (accessed on 10 November 2023).
- Johns Hopkins University of Medicine. New COVID-19 Cases Worldwide. 2022. Available online: https://coronavirus.jhu.edu/data/new-cases (accessed on 22 October 2023).
- Mehraeen, E.; Karimi, A.; Barzegary, A.; Vahedi, F.; Afsahi, A.M.; Dadras, O.; Moradmand-Badie, B.; Alinaghi, S.A.S.; Jahanfar, S. Predictors of mortality in patients with COVID-19—A systematic review. Eur. J. Integr. Med. 2020, 40, 101226. [Google Scholar] [CrossRef] [PubMed]
- Rangachev, A.; Marinov, G.K.; Mladenov, M. The demographic and geographic impact of the COVID pandemic in Bulgaria and Eastern Europe in 2020. medRxiv 2021. [Google Scholar] [CrossRef] [PubMed]
- Bonafè, M.; Prattichizzo, F.; Giuliani, A.; Storci, G.; Sabbatinelli, J.; Olivieri, F. Inflamm-aging: Why older men are the most susceptible to SARS-CoV-2 complicated outcomes. Cytokine Growth Factor. Rev. 2020, 53, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.J.; Jung, S.I. Age-related morbidity and mortality among patients with COVID-19. Infect. Chemother. 2020, 52, 154–164. [Google Scholar]
- Sharma, G.; Volgman, A.S.; Michos, E.D. Sex differences in mortality from COVID-19 pandemic: Are men vulnerable and women protected? JASS Case Rep. 2020, 2, 1407–1410. [Google Scholar]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef]
- Nasif, W.A.; Ali, A.S.E.-M.; Mukhtar, M.H.; Alhuzali, A.M.H.; Alnashri, Y.A.Y.; Gadah, Z.I.A.; Edrees, E.A.A.; Albarakati, H.A.M.; Aloufi, H.S.M. Elucidating the correlation of D-dimer levels with COVID-19 severity: A scoping review. Anemia 2022, 2022, 9104209. [Google Scholar] [CrossRef]
- Lippi, G.; Favaloro, E. D-dimer is associated with severity of coronavirus disease 2019: A pooled analysis. Thromb. Haemost. 2020, 120, 876–878. [Google Scholar] [CrossRef]
- Lazar, M.; Barbu, E.C.; Chitu, C.E.; Anghel, A.-M.; Niculae, C.-M.; Manea, E.-D.; Damalan, A.-C.; Bel, A.-A.; Patrascu, R.-E.; Hristea, A.; et al. Mortality predictors in severe SARS-CoV-2 infection. Medicina 2022, 58, 945. [Google Scholar] [CrossRef] [PubMed]
- WHO. COVID19: Case. DefinitionsWHO/2019nCoV/Surveillance_Case_Definition/2020. Available online: https://data.who.int/dashboards/covid19/deaths (accessed on 10 November 2023).
- Cascella, M.; Rajnik, M.; Aleem, A.; Dulebohn, S.C.; Di Napoli, R. Features, Evaluation, and Treatment of Coronavirus (COVID-19). In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar] [PubMed]
- Macedo, A.; Gonçalves, N.; Febra, C. COVID-19 fatality rates in hospitalized patients: Systematic review and meta-analysis. Ann. Epidemiol. 2021, 57, 14–21. [Google Scholar]
- CDC COVID-19 Response Team. Severe outcomes among patients with coronavirus disease 2019 (COVID-19)—United States, February 12–March 16, 2020. MMWR-Morb. Mortal. Wkly. Rep. 2020, 69, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. COVID Data Tracker. U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 23 March 2025. Available online: https://covid.cdc.gov/covid-data-tracker (accessed on 10 October 2023).
- Gacche, R.N.; Gacche, R.A.; Chen, J.; Li, H.; Li, G. Predictors of morbidity and mortality in COVID-19. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 1684–1707. [Google Scholar] [CrossRef] [PubMed]
- Raimondi, F.; Novelli, L.; Ghirardi, A.; Russo, F.M.; Pellegrini, D.; Biza, R.; Trapasso, R.; Giuliani, L.; Anelli, M.; Amoroso, M.; et al. COVID-19 and gender: Lower rate but same mortality of severe disease in women—An observational study. BMC Pulm. Med. 2021, 21, 96. [Google Scholar] [CrossRef]
- Jin, J.M.; Bai, P.; He, W.; Wu, F.; Liu, X.F.; Han, D.M.; Liu, S.; Yang, J.K. Gender Differences in Patients With COVID-19: Focus on Severity and Mortality. Front. Public. Health. 2020, 8, 152. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mallah, S.I.; Ghorab, O.K.; Al-Salmi, S.; Abdellatif, O.S.; Tharmaratnam, T.; Iskandar, M.A.; Sefen, J.A.N.; Sidhu, P.; Atallah, B.; El-Lababidi, R.; et al. COVID-19: Breaking down a global health crisis. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 35. [Google Scholar]
- Babapoor-Farrokhran, S.; Gill, D.; Walker, J.; Rasekhi, R.T.; Bozorgnia, B.; Amanullah, A. Myocardial injury and COVID-19: Possible mechanisms. Life Sci. 2020, 253, 117723. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sindi, A.A.; Tashkandi, W.A.; Jastaniah, M.W.; Bashanfar, M.A.; Fakhri, A.F.; Alsallum, F.S.; Alguydi, H.B.; Elhazmi, A.; Al-Khatib, T.A.; Alawi, M.M.; et al. Impact of diabetes mellitus and co-morbidities on mortality in patients with COVID-19: A single-center retrospective study. Saudi Med. J. 2023, 44, 67–73. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Husain, Q.; Kokinakos, K.; Kuo, Y.H.; Zaidi, F.; Houston, S.; Shargorodsky, J. Characteristics of COVID-19 smell and taste dysfunction in hospitalized patients. Am. J. Otolaryngol. 2021, 42, 103068. [Google Scholar] [CrossRef]
- Paderno, A.; Schreiber, A.; Grammatica, A.; Raffetti, E.; Tomasoni, M.; Gualtieri, T.; Taboni, S.; Zorzi, S.; Lombardi, D.; Deganello, A.; et al. Smell and taste alterations in COVID-19: A cross-sectional analysis of different cohorts. Int. Forum Allergy Rhinol. 2020, 10, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Rocke, J.; Hopkins, C.; Philpott, C.; Kumar, N. Is loss of sense of smell a diagnostic marker in COVID-19: A systematic review and meta-analysis. Clin. Otolaryngol. 2020, 45, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Muniyappa, R.; Gubbi, S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am. J. Physiol. Endocrinol. Metab. 2020, 318, E736–E741. [Google Scholar] [CrossRef]
- Yang, J.K.; Lin, S.S.; Ji, X.J.; Guo, L.M. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010, 47, 193–199. [Google Scholar] [CrossRef]
- Jdiaa, S.S.; Mansour, R.; El Alayli, A.; Gautam, A.; Thomas, P.; Mustafa, R.A. COVID-19 and chronic kidney disease: An updated overview of reviews. J. Nephrol. 2022, 35, 69–85. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ren, J.; Pang, W.; Luo, Y.; Cheng, D.; Qiu, K.; Rao, Y.; Zheng, Y.; Dong, Y.; Peng, J.; Hu, Y.; et al. Impact of Allergic Rhinitis and Asthma on COVID-19 Infection, Hospitalization, and Mortality. J. Allergy Clin. Immunol. Pr. 2022, 10, 124–133. [Google Scholar] [CrossRef]
- Signes-Costa, J.; Núñez-Gil, I.J.; Soriano, J.B.; Arroyo-Espliguero, R.; Eid, C.M.; Romero, R.; Uribarri, A.; Fernández-Rozas, I.; Aguado, M.G.; Becerra-Muñoz, V.M.; et al. HOPE COVID-19 investigators. Prevalence and 30-Day Mortality in Hospitalized Patients with COVID-19 and Prior Lung Diseases. Arch. Bronconeumol. 2021, 57, 13–20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tian, W.; Jiang, W.; Yao, J.; Nicholson, C.J.; Li, R.H.; Sigurslid, H.H.; Wooster, L.; Rotter, J.I.; Guo, X.; Malhotra, R. Predictors of mortality in hospitalized COVID-19 patients: A systematic review and meta-analysis. J. Med. Virol. 2020, 92, 1875–1883. [Google Scholar] [CrossRef]
- Ghahramani, S.; Tabrizi, R.; Lankarani, K.B.; Kashani, S.M.A.; Rezaei, S.; Zeidi, N.; Akbari, M.; Heydari, S.T.; Akbari, H.; Nowrouzi-Sohrabi, P.; et al. Laboratory features of severe vs. non-severe COVID-19 patients in Asian populations: A systematic review and meta-analysis. Eur. J. Med. Res. 2020, 25, 30. [Google Scholar] [CrossRef]
Asymptomatic and presymptomatic infection | Asymptomatic individuals with a positive PCR for SARS-CoV-2 without any clinical symptoms consistent with COVID-19 |
Mild illness | Individuals who have symptoms of COVID-19, such as fever, cough, sore throat, malaise, headache, muscle pain, nausea, vomiting, diarrhea, anosmia, or dysgeusia but without shortness of breath or abnormal chest imaging |
Moderate illness | Individuals who have clinical symptoms or radiologic evidence of lower respiratory tract disease and who have oxygen saturation (SpO2) ≥ 94% at room air |
Severe illness | Individuals who have SpO2 ≤ 94% at room air, a ratio of partial pressure of arterial oxygen to fraction of inspired oxygen, (PaO2/FiO2) of less than 300, with marked tachypnea with respiratory frequency > 30 breaths/min or lung infiltrates > 50% |
Critical illness | Individuals who have acute respiratory failure, septic shock, and/or multiple organ dysfunction. Patients with severe COVID-19 illness may become critically ill with the development of acute respiratory distress syndrome (ARDS), which tends to occur approximately one week after the onset of symptoms |
Demographic Characteristics | Total Number of Patients n = 306 (100%) | Survivors n = 274 (89.5%) | Non-Survivors n = 32 (10.5%) | p | |
---|---|---|---|---|---|
Age (Mean ± SD) | 67.1 ± 13.6 | 66.7 | 70.6 | 0.125 | |
Sex | Men | 160 (52.5%) | 141 (88.1%) | 19 (11.9%) | 0.457 |
Women | 146 (47.5%) | 133 (91.1%) | 13 (8.9%) | ||
Smoking | Non-smokers | 257 (84%) | 232 (89.5%) | 25(10.5%) | 0.234 |
Smokers | 49 (16%) | 42 (85.7%) | 7 (14.3%) | ||
Residence | Town | 220 (71.9%) | 193 (87.7%) | 27 (12.3%) | 0.680 |
Village | 86 (28.1%) | 81 (92.4%) | 5 (5.8) %) | ||
Institutionalization | No | 294 (96.1%) | 262 (89.1%) | 32 (10.9%) | 0.259 |
Yes | 12 (3.9%) | 12 (100%) | 0 (0%) |
Characteristics | Number of Patients n (%) | Survivors n (%) | Non-Survivors n (%) | p |
---|---|---|---|---|
No comorbidities | 44 (14.3%) | 43 (97.7%) | 1 (2.3%) | 0.001 * |
With pre-existing comorbidities | 262 (85.7%) | 231 (88.1%) | 31 (11.9%) |
Nature of Comorbidities | Number of Patients n (%) | Survivors n (%) | Non-Survivors n (%) | p | |
---|---|---|---|---|---|
Cardio-vascular disorders | No | 94 (30.7%) | 91 (96.8%) | 3 (3.2%) | 0.003 * |
Yes | 212 (69.3%) | 183 (86.3%) | 29(13.7%) | ||
Chronic lung disorders | No | 254 (30.7%) | 242 (92.1%) | 20 (7.9%) | 0.003 * |
Yes | 52 (69.3%) | 40 (76.9%) | 12 (29.1%) | ||
Chronic renal disorders | No | 286 (93.5%) | 256 (89.5%) | 30 (11.5%) | 0.561 |
Yes | 20 (9.5%) | 18 (90%) | 2 (10%) | ||
Malignancies | No | 271 (88.6%) | 243 (89.7%) | 28 (10.3%) | 0.513 |
Yes | 35 (11.4) | 31 (88.6%) | 4 (11.4%) | ||
Neurological disorders | No | 263 (85.9%) | 236 (89.7%) | 27 (10.3%) | 0.478 |
Yes | 43 (14.1%) | 38 (88.4%) | 5 (11.6%) | ||
Endocrine disorders | No | 226(73.9%) | 208 (92%) | 18 (8.0%) | 0.017 * |
Yes | 80 (26.1%) | 66 (82.5%) | 14 (17.5%) |
Symptoms | Total Number n = 306 (100%) | Survivors n = 274 (89.5%) | Non-Survivors n = 32 (10.5%) | p | |
---|---|---|---|---|---|
Fever > 37 °C | No | 89 (29%) | 79 (88.8%) | 10 (22.2%) | 0.459 |
Yes | 217 (71%) | 195 (89.9%) | 22 (10.1%) | ||
Sore throat | No | 257 (83.9%) | 232 (90.3%) | 25 (9.7%) | 0.027 * |
Yes | 36 (16.1%) | 31(86.1%) | 5 (13.9%) | ||
Rhinitis | No | 294 (96%) | 232 (90.3%) | 25 (9.7%) | 0.213 |
Yes | 12 (4%) | 11(91.7%) | 1 (8.3%) | ||
Dry cough | No | 46 (15.0%) | 46 (100%) | 0 | 0.029 * |
Yes | Yes—181 (59.15) | 162 (89.5%) | 19 (10.5%) | ||
Productive cough | No | 46 (15%) | 46 (1005) | 0 | 0.004 * |
Yes | 77 (25.1%) | 64 (83.1%) | 13 (16.9%) | ||
Dyspnea | No | 163 (53.3%) | 154 (94.5%) | 9 (5.5%) | 0.002 * |
Yes | 143 (47.7%) | 120 (83.9%) | 23 (16.1) | ||
Mental state changes | No | 281 (91.8%) | 254 (90.6%) | 27 (9.6%%) | 0.104 |
Yes | 25 (8.2%) | 20 (80%) | 5 (20%) | ||
Nausea | No | 222 (72.5%) | 197 (88.7%) | 25 (11.3%) | 0.384 |
Yes | 71 (23.2%) | 64(90.1%) | 7 (9.9%) | ||
Diarrhea | No | 222 (72.5%) | 197 (88.7%) | 25 (11.3%) | 0.375 |
Yes | 11 (3.6%) | 11 (100%) | 0 |
Laboratory Parameters | Number of Patients n (%) | Survivors n (%) | Non-Survivors n (%) | p | |
---|---|---|---|---|---|
Haemoglobin Hg < 140 g/L (female) Hg < 160 g/L (male) | 271(88.6%) | 242 (89.3%) | 29 (10.7%) | 0.487 | |
35(11.4%) | 32 (91.4%) | 3 (8.6%) | |||
Leucocytes: 4–10 g/L >10—leucopenia >4—leucopenia | 177 (91.2%) | 17 (8.8%) | 17 (8.8%) | 0.131 | |
67 (83.8%) | 67 (83.8%) | 13 (16.3%) | |||
30 (93.8%) | 30 (93.8%) | 2 (6.3%) | |||
CRP > 10 g/L | ≤10 | 31 (89.8%) | 29 (93.6%) | 2 (6.5%) | 0.334 |
>11 | 275 (10.1%) | 245 (89.1%) | 30 (10.9%) | ||
LDH > 460 U/L | ≤460 | 92 (30.0%) | 84 (91.3%) | 8 (8.7%) | 0.331 |
>460 | 214 (70%) | 190 (88.2%) | 24 (20.2%) | ||
Ferritin > 150 µmol/L | ≤150 | 31 (10.1%) | 56 (92.8%) | 1 (1.8%) | 0.009 * |
>150 | 275 (89.9%) | 218 (87.6%) | 31 (12.4%) | ||
ASAT > 35 U/L | <35 | 135 (44.1%) | 120 (88.9%) | 15 (11.1%) | 0.397 |
>35 | 171 (55.8%) | 146 (85.4%) | 25 (14.6%) | ||
ALAT > 36 U/L | <36 | 165 (53.9%) | 142 (86.7%) | 23 (13.3%) | 0.511 |
>36 | 141 (47.1%) | 143 (88.7%) | 18 (12.8%) | ||
GGT > 38 U/L | <38 | 127 (41.5%) | 114 (89.8%) | 13 (10.2%) | 0.233 |
>38 | 179 (58.5%) | 152 (84.9%) | 27 (15.1%) | ||
Creatinine µmol/L | ≤97 | 228 (10.1%) | 209 (91.4%) | 19 (8.6%) | 0.038 * |
>97 | 78 (89.9%) | 65 (84.7%) | 13 (15.3) | ||
Urea mmol/L | ≤8 | 234 (76.4%) | 212 (90.6%) | 22(9.4%) | 0.191 |
>8 | 72 (24.6%) | 62 (86.1%) | 10 (13.9%) | ||
D-Dimers mg/L | ≤0.5 | 103 (33.6%) | 98 (95.1%) | 5 (5.1%) | 0.015 * |
>0.5 | 203 (66.5%) | 176 (86.7%) | 27 (13.3%) | ||
Fibriogen g/L | ≤4.5 | 132 (43.1%) | 123 (92.3%) | 9 (6.8%) | 0.036 |
>4.5 | 174 (56.9%) | 151 (86.8%) | 23 13.2%) | ||
pO2 mmHg | >50 | 230 (75.1%) | 216 (92.3%) | 14 (7.7%) | 0.006 * |
≤50 | 76 (24.8%) | 58 (80.6%) | 18 (19.4%) | ||
s02% | >90 | 207 (67.4%) | 182 (89.4%) | 22 (10.6%) | 0.001 * |
<90 | 99 (32.6%) | 81 (81.8%) | 18 (18.2%) |
Variables in the Equation | |||||||||
---|---|---|---|---|---|---|---|---|---|
B | S.E. | Wald | df | Sig. | Exp(B) | 95% C.I. for EXP(B) | |||
Lower | Upper | ||||||||
Step 1 a | Dyspnea | 1.157 | 0.446 | 6.718 | 1 | 0.010 | 3.179 | 1.326 | 7.625 |
Severity | 1.303 | 0.315 | 17.101 | 1 | 0.000 | 3.679 | 1.984 | 6.821 | |
Endocrine disorders | 0.905 | 0.421 | 4.618 | 1 | 0.032 | 2.471 | 1.083 | 5.641 | |
Lung disorders | 1.420 | 0.451 | 9.927 | 1 | 0.002 | 4.136 | 1.710 | 10.004 | |
Constant | −7.074 | 1.079 | 42.954 | 1 | 0.000 | 0.001 |
Constant | Dyspnea | Severity | Endocrine Disorders | Lung Disorders | ||
---|---|---|---|---|---|---|
Step 1 | Constant | 1.000 | −0.395 | −0.914 | −0.196 | −0.295 |
Dyspnea | −0.395 | 1.000 | 0.120 | 0.062 | −0.010 | |
Severity | −0.914 | 0.120 | 1.000 | 0.008 | 0.174 | |
Endocrine disorders | −0.196 | 0.062 | 0.008 | 1.000 | 0.107 | |
Lung disorders | −0.295 | −0.010 | 0.174 | 0.107 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blagoeva, V.; Hodzhev, V.; Uchikov, P.; Dobreva-Yatseva, B.; Stoyanova, R.; Shterev, M.; Atiq, S.; Prasad, A.; Shankar Babu, S. Clinical Course and Mortality Predictors in Adult Hospitalized Patients with COVID-19 Infection—A Retrospective Cohort Study. Medicina 2025, 61, 579. https://doi.org/10.3390/medicina61040579
Blagoeva V, Hodzhev V, Uchikov P, Dobreva-Yatseva B, Stoyanova R, Shterev M, Atiq S, Prasad A, Shankar Babu S. Clinical Course and Mortality Predictors in Adult Hospitalized Patients with COVID-19 Infection—A Retrospective Cohort Study. Medicina. 2025; 61(4):579. https://doi.org/10.3390/medicina61040579
Chicago/Turabian StyleBlagoeva, Vesela, Vladimir Hodzhev, Petar Uchikov, Bistra Dobreva-Yatseva, Rumyana Stoyanova, Maritza Shterev, Samiya Atiq, Akanksha Prasad, and Sriharini Shankar Babu. 2025. "Clinical Course and Mortality Predictors in Adult Hospitalized Patients with COVID-19 Infection—A Retrospective Cohort Study" Medicina 61, no. 4: 579. https://doi.org/10.3390/medicina61040579
APA StyleBlagoeva, V., Hodzhev, V., Uchikov, P., Dobreva-Yatseva, B., Stoyanova, R., Shterev, M., Atiq, S., Prasad, A., & Shankar Babu, S. (2025). Clinical Course and Mortality Predictors in Adult Hospitalized Patients with COVID-19 Infection—A Retrospective Cohort Study. Medicina, 61(4), 579. https://doi.org/10.3390/medicina61040579