Real-World Experience with the Available Outpatient COVID-19 THErapies in Patients with canceR (CO.THER)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. SARS-CoV-2 Vaccination, Infection, and Early Therapies
3.3. Primary Endpoint: Hospitalization Within 14 Days
3.4. Secondary Endpoints: SARS-CoV-2 Infection
3.5. Secondary Endpoints: Long COVID
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Freeman, V.; Hughes, S.; Carle, C.; Campbell, D.; Egger, S.; Hui, H.; Yap, S.; Deandrea, S.; Caruana, M.; Onyeka, T.C.; et al. Are patients with cancer at higher risk of COVID-19-related death? A systematic review and critical appraisal of the early evidence. J. Cancer Policy 2022, 33, 100340. [Google Scholar] [CrossRef]
- Cheruiyot, I.; Kipkorir, V.; Ngure, B.; Misiani, M.; Munguti, J. Cancer is associated with coronavirus disease (COVID-19) severity and mortality: A pooled analysis. Am. J. Emerg. Med. 2021, 45, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, J.; Hughes, S.; Hui, H.; Allsop, M.J.; Egger, S.; David, M.; Caruana, M.; Coxeter, P.; Carle, C.; Onyeka, T.; et al. Risk of COVID-19 death for people with a pre-existing cancer diagnosis prior to COVID-19-vaccination: A systematic review and meta-analysis. Int. J. Cancer 2024, 154, 1394–1412. [Google Scholar] [CrossRef]
- Watson, O.J.; Barnsley, G.; Toor, J.; Hogan, A.B.; Winskill, P.; Ghani, A.C. Global impact of the first year of COVID-19 vaccination: A mathematical modelling study. Lancet Infect. Dis. 2022, 22, 1293–1302. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, D.; Pan, Y.; Li, H.; Zhao, W.; Lu, T.; Kong, W.; Ding, M.; Wang, X.; Zhang, G. Serological response and immune-related adverse events following COVID-19 vaccination in cancer patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Rev. Med. Virol. 2024, 34, e2495. [Google Scholar] [CrossRef]
- Wankhede, D.; Grover, S.; Hofman, P. Determinants of humoral immune response to SARS-CoV-2 vaccines in solid cancer patients: A systematic review and meta-analysis. Vaccine 2023, 41, 1791–1798. [Google Scholar] [CrossRef] [PubMed]
- Godwin, P.O.; Polsonetti, B.; Caron, M.F.; Oppelt, T.F. Remdesivir for the Treatment of COVID-19: A Narrative Review. Infect. Dis. Ther. 2024, 13, 1–19. [Google Scholar] [CrossRef]
- Bellino, S. COVID-19 treatments approved in the European Union and clinical recommendations for the management of non-hospitalized and hospitalized patients. Ann. Med. 2022, 54, 2856–2860. [Google Scholar] [CrossRef] [PubMed]
- Beran, A.; Mhanna, A.; Mhanna, M.; Farrow, D.; Sidiki, S.; Khader, Y.; Srour, O.; Kayyali, A. Molnupiravir for the Treatment of Coronavirus Disease 2019: A Systematic Review With Meta-Analysis of 12,451 Patients. Am. J. Ther. 2024, 31, e47–e50. [Google Scholar] [CrossRef]
- Reis, S.; Metzendorf, M.I.; Kuehn, R.; Popp, M.; Gagyor, I.; Kranke, P.; Meybohm, P.; Skoetz, N.; Weibel, S. Nirmatrelvir combined with ritonavir for preventing and treating COVID-19. Cochrane Database Syst. Rev. 2023, 11, CD015395. [Google Scholar]
- Gilead Sciences Inc. VEKLURY (Remdesivir) for Injection, for Intravenous Use [Package Insert]. Prescribing Information; Gilead Sciences Inc.: Foster City, CA, USA, 2024. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/214787s026lbl.pdf (accessed on 10 March 2025).
- Mozaffari, E.; Chandak, A.; Ustianowski, A.; Rivera, C.G.; Ahuja, N.; Jiang, H.; Berry, M.; Okulicz, J.F.; Amin, A.N. Prevalence of Potential Drug Interactions With Direct-Acting Antivirals for COVID-19 Among Hospitalized Patients. Clin. Ther. 2024, 46, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.; Yarwood, M.J.; Levick, B.; Gibbons, D.C.; Drysdale, M.; Kerr, W.; Watkins, J.D.; Young, S.; Pierce, B.F.; Lloyd, E.J.; et al. Characteristics and outcomes of patients with COVID-19 at high risk of disease progression receiving sotrovimab, oral antivirals or no treatment in England: A retrospective cohort study. Curr. Med. Res. Opin. 2024, 40, 1323–1334. [Google Scholar] [CrossRef] [PubMed]
- Badraoui, R.; Alrashedi, M.M.; El-May, M.V.; Bardakci, F. Acute respiratory distress syndrome: A life threatening associated complication of SARS-CoV-2 infection inducing COVID-19. J. Biomol. Struct. Dyn. 2021, 39, 6842–6851. [Google Scholar] [CrossRef] [PubMed]
- Yelin, D.; Moschopoulos, C.D.; Margalit, I.; Gkrania-Klotsas, E.; Landi, F.; Stahl, J.P.; Yahav, D. ESCMID rapid guidelines for assessment and management of long COVID. Clin. Microbiol. Infect. 2022, 28, 955–972. [Google Scholar] [CrossRef]
- Xie, Y.; Choi, T.; Al-Aly, Z. Association of treatment with nirmatrelvir and the risk of post-COVID-19 condition. JAMA Int. Med. 2023, 183, 554–564. [Google Scholar] [CrossRef]
- Bajema, K.L.; Berry, K.; Streja, E.; Rajeevan, N.; Li, Y.; Mutalik, P.; Yan, L.; Cunningham, F.; Hynes, D.M.; Rowneki, M.; et al. Effectiveness of COVID-19 treatment with nirmatrelvir-ritonavir or molnupiravir among U.S. veterans: Target trial emulation studies with one-month and six-month outcomes. Ann. Intern. Med. 2023, 176, 807–816. [Google Scholar] [CrossRef]
- Cuschieri, S. The STROBE guidelines. Saudi J. Anaesth. 2019, 13 (Suppl. S1), S31–S34. [Google Scholar] [CrossRef]
- Wong, C.K.H.; Au, I.C.H.; Lau, K.T.K.; Lau, E.H.Y.; Cowling, B.J.; Leung, G.M. Real-world effectiveness of molnupiravir and nirmatrelvir plus ritonavir against mortality, hospitalisation, and in-hospital outcomes among community-dwelling, ambulatory patients with confirmed SARS-CoV-2 infection during the omicron wave in Hong Kong: An observational study. Lancet 2022, 400, 1213–1222. [Google Scholar]
- Lasagna, A.; Cassaniti, I.; Lilleri, D.; Quaccini, M.; Ferrari, A.; Sacchi, P.; Bruno, R.; Baldanti, F.; Pedrazzoli, P. Effectiveness of the available early therapies in reducing severe COVID-19 in non-hospitalized patients with solid tumors on active treatment. Front. Med. 2022, 9, 1036473. [Google Scholar] [CrossRef]
- Lasagna, A.; Albi, G.; Figini, S.; Basile, S.; Sacchi, P.; Bruno, R.; Pedrazzoli, P. Long-COVID in Patients with Cancer Previously Treated with Early Anti-SARS-CoV-2 Therapies in an Out-of-Hospital Setting: A Single-Center Experience. Cancers 2023, 15, 1269. [Google Scholar] [CrossRef]
- Nyberg, T.; Ferguson, N.M.; Nash, S.G.; Webster, H.H.; Flaxman, S.; Andrews, N.; Hinsley, W.; Bernal, J.L.; Kall, M.; Bhatt, S.; et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: A cohort study. Lancet 2022, 399, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- Malahe, S.R.K.; Hoek, R.A.S.; Dalm, V.A.S.H.; Broers, A.E.C.; den Hoed, C.M.; Manintveld, O.C.; Baan, C.C.; van Deuzen, C.M.; Papageorgiou, G.; Bax, H.I.; et al. Clinical Characteristics and Outcomes of Immunocompromised Patients With Coronavirus Disease 2019 Caused by the Omicron Variant: A Prospective, Observational Study. Clin. Infect. Dis. 2023, 76, e172–e178. [Google Scholar] [CrossRef]
- Hammond, J.; Fountaine, R.J.; Yunis, C.; Fleishaker, D.; Almas, M.; Bao, W.; Wisemandle, W.; Baniecki, M.L.; Hendrick, V.M.; Kalfov, V.; et al. Nirmatrelvir for Vaccinated or Unvaccinated Adult Outpatients with Covid-19. N. Engl. J. Med. 2024, 390, 1186–1195. [Google Scholar] [CrossRef] [PubMed]
- Guermazi, D.; Arvanitis, P.; Vieira, K.; Warner, J.L.; Farmakiotis, D. Oral antivirals for COVID-19 among patients with cancer. Support. Care Cancer 2024, 32, 496. [Google Scholar] [CrossRef]
- Gerhart, J.; Cox, D.S.; Singh, R.S.P.; Chan, P.L.S.; Rao, R.; Allen, R.; Shi, H.; Masters, J.C.; Damle, B. A Comprehensive Review of the Clinical Pharmacokinetics, Pharmacodynamics, and Drug Interactions of Nirmatrelvir/Ritonavir. Clin. Pharmacokinet. 2024, 63, 27–42. [Google Scholar] [CrossRef]
- Zaharuddin, Z.; Md Hussin, N.S.; Karuppannan, M. Real-world analysis of safety, tolerability, and adherence to nirmatrelvir-ritonavir (paxlovid) in primary care COVID-19 outpatients. Sci. Rep. 2024, 14, 24750. [Google Scholar] [CrossRef]
- Hua, T.; Fan, R.; Fan, Y.; Chen, F. Immune response of COVID-19 vaccines in solid cancer patients: A meta-analysis. Hum. Vaccin. Immunother. 2024, 20, 2357424. [Google Scholar] [CrossRef]
- Nordström, P.; Ballin, M.; Nordström, A. Risk of SARS-CoV-2 reinfection and COVID-19 hospitalisation in individuals with natural and hybrid immunity: A retrospective, total population cohort study in Sweden. Lancet Infect. Dis. 2022, 22, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Jorda, A.; Ensle, D.; Eser, H.; Glötzl, F.; Riedl, B.; Szell, M.; Valipour, A.; Zoufaly, A.; Wenisch, C.; Haider, D.; et al. Real-world effectiveness of nirmatrelvir-ritonavir and molnupiravir in non-hospitalized adults with COVID-19: A population-based, retrospective cohort study. Clin. Microbiol. Infect. 2024, 79, 2119–2131. [Google Scholar] [CrossRef]
- Ceban, F.; Kulzhabayeva, D.; Rodrigues, N.B.; Di Vincenzo, J.D.; Gill, H.; Subramaniapillai, M.; Lui, L.M.W.; Cao, B.; Mansur, R.B.; Ho, R.C.; et al. COVID-19 vaccination for the prevention and treatment of long COVID: A systematic review and meta-analysis. Brain Behav. Immun. 2023, 111, 211–229. [Google Scholar] [CrossRef]
- Fernández-de-las-Peñas, C.; Martín-Guerrero, J.D.; Pellicer-Valero, Ó.J.; Navarro-Pardo, E.; Gómez-Mayordomo, V.; Cuadrado, M.L.; Arias-Navalón, J.A.; Cigarán-Méndez, M.; Hernández-Barrera, V.; Arendt-Nielsen, L. Female Sex Is a Risk Factor Associated with Long-Term Post-COVID Related-Symptoms but Not with COVID-19 Symptoms: The LONG-COVID-EXP-CM Multicenter Study. J. Clin. Med. 2022, 11, 413. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.P.; Thaweethai, T.; Karlson, E.W.; Bonilla, H.; Horne, B.D.; Mullington, J.M.; Wisnivesky, J.P.; Hornig, M.; Shinnick, D.J.; Klein, J.D.; et al. Sex Differences in Long COVID. JAMA Netw. Open 2025, 8, e2455430. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Haupert, S.R.; Zimmermann, L.; Shi, X.; Fritsche, L.G.; Mukherjee, B. Global prevalence of post-coronavirus disease 2019 (COVID-19) condition or long COVID: A meta-analysis and systematic review. J. Infect. Dis. 2022, 226, 1593–1607. [Google Scholar] [CrossRef]
- Grusdat, N.P.; Stäuber, A.; Tolkmitt, M.; Schnabel, J.; Schubotz, B.; Wright, P.R.; Schulz, H. Routine cancer treatments and their impact on physical function, symptoms of cancer-related fatigue, anxiety, and depression. Support. Care Cancer 2022, 30, 3733–3744. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zang, C.; Li, H.; Khullar, D.; Zhang, Y.; Strobel, S.; Chen, Y.; Sala, M.; Patel, P.; Comellas, A.; et al. Real-World Effectiveness of Nirmatrelvir in Protecting Long COVID for Outpatient Adult Patients—A Large-Scale Observational Cohort Study from the RECOVER Initiative. Res. Sq. 2024. [Google Scholar] [CrossRef]
% | Num Patients | Patients’ Characteristics |
---|---|---|
59.5/40.5 | 78/53 | Female/Male |
34.3/65.7 | 45/86 | Smoke (yes/no) |
44.4/55.6 | 20/25 | Smokers (former/current) |
41.2 | 54 | No comorbidities |
58.8 | 77 | ≥1 comorbidity |
29.9 | 23 | Diabetes mellitus type 2 |
29.9 | 23 | Cardiovascular diseases |
5.2 | 4 | Autoimmune diseases |
36.4 | 28 | COPD 1 |
12.9 | 10 | Neurological diseases (like ansia, depression, etc.) |
3.9 | 3 | Dermatologic diseases |
2.7 | 2 | Cerebrovascular diseases |
% | Num Patients | Type of Tumor |
---|---|---|
32.8 | 43 | Breast cancer |
23.7 | 31 | NSCLC |
12.2 | 16 | Colon–rectal cancer |
5.3 | 7 | Pancreatic cancer |
4.6 | 6 | Melanoma |
3.8 | 5 | Kidney cancer |
3.1 | 4 | Head and neck cancer |
3.2 | 3 | Urothelial/bladder cancer |
3.2 | 3 | HCC |
3.2 | 3 | Gastric cancer |
3.2 | 3 | SCLC |
5.3 | 7 | Others |
Tumor Stage | ||
31.3 | 41 | Stage I/II/III |
68.7 | 90 | Stage IV |
Type of oncological treatment | ||
52.7 | 69 | Chemotherapy |
25.9 | 34 | ICIs |
15.3 | 20 | Hormone therapy |
19.8 | 26 | Targeted therapy |
Type of ICIs | ||
82.4 | 28 | Anti PD-1 |
14.7 | 5 | Anti PD-L1 |
2.9 | 1 | Anti CTLA4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasagna, A.; Gambini, G.; Klersy, C.; Figini, S.; Marino, S.; Sacchi, P.; Pedrazzoli, P. Real-World Experience with the Available Outpatient COVID-19 THErapies in Patients with canceR (CO.THER). Cancers 2025, 17, 999. https://doi.org/10.3390/cancers17060999
Lasagna A, Gambini G, Klersy C, Figini S, Marino S, Sacchi P, Pedrazzoli P. Real-World Experience with the Available Outpatient COVID-19 THErapies in Patients with canceR (CO.THER). Cancers. 2025; 17(6):999. https://doi.org/10.3390/cancers17060999
Chicago/Turabian StyleLasagna, Angioletta, Giulia Gambini, Catherine Klersy, Simone Figini, Sofia Marino, Paolo Sacchi, and Paolo Pedrazzoli. 2025. "Real-World Experience with the Available Outpatient COVID-19 THErapies in Patients with canceR (CO.THER)" Cancers 17, no. 6: 999. https://doi.org/10.3390/cancers17060999
APA StyleLasagna, A., Gambini, G., Klersy, C., Figini, S., Marino, S., Sacchi, P., & Pedrazzoli, P. (2025). Real-World Experience with the Available Outpatient COVID-19 THErapies in Patients with canceR (CO.THER). Cancers, 17(6), 999. https://doi.org/10.3390/cancers17060999