Skip to main content
Log in

Comparative analysis of aptamers binding to SARS-CoV-2 N protein using capillary electrophoresis and bio-layer interferometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Aptamers are increasingly employed in SARS-CoV-2 theragnostics in recent years. Characterization of aptamers, testing affinity and kinetic parameters (e.g., equilibrium dissociation constant (KD), kon, and koff), can be done by several methods and influenced by many factors. This study aims to characterize the binding of aptamers to SARS-CoV-2 nucleocapsid (N) protein using capillary electrophoresis (CE) and bio-layer interferometry (BLI). These two analytical methods differ by how the aptamer binds to its target protein once the aptamer, as a capture ligand, is partitioned in solution (CE) or immobilized on the biosensor (BLI). With CE, the KD values of the N-binding aptamers (tNSP1, tNSP2, and tNSP3) were determined to be 18 ± 4 nM, 45 ± 11 nM, and 32 ± 7 nM, respectively, while the KD measurements by BLI yielded 4.8 ± 0.6, 4.5 ± 0.5, and 2.9 ± 0.3 nM, respectively. CE results showed a higher KD across all aptamers tested. The differences in the steric hindrance and confirmational structures of the aptamers immobilized on the BLI biosensors versus those suspended in the CE sample solution affect the molecular interactions between aptamers and the target proteins. Moreover, the buffer composition including pH and ionic strength can influence the stability of aptamer structures, or aptamer-protein complexes. All these variables affect the binding and calculated KD. In this sense, a KD value alone is not sufficient to make comparisons between aptamers; instead, the entire experimental setup should also be considered. This is particularly important when implementing aptamers in different bioanalytical systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Poolsup S, Zaripov E, Hüttmann N, Minic Z, Artyushenko PV, Shchugoreva IA, Tomilin FN, Kichkailo AS, Berezovski MV. Discovery of DNA aptamers targeting SARS-CoV-2 nucleocapsid protein and protein-binding epitopes for label-free COVID-19 diagnostics. Mol Ther - Nucleic Acids. 2023;31:731–43. https://doi.org/10.1016/j.omtn.2023.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kevadiya BD, Machhi J, Herskovitz J, Oleynikov MD, Blomberg WR, Bajwa N, Soni D, Das S, Hasan M, Patel M, Senan AM, Gorantla S, McMillan J, Edagwa B, Eisenberg R, Gurumurthy CB, Reid SPM, Punyadeera C, Chang L, Gendelman HE. Diagnostics for SARS-CoV-2 infections. Nat Mater. 2021;20:593–605. https://doi.org/10.1038/s41563-020-00906-z.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wandtke T, Wędrowska E, Szczur M, Przybylski G, Libura M, Kopiński P. Aptamers—diagnostic and therapeutic solution in SARS-CoV-2. Int J Mol Sci. 2022;23:1412. https://doi.org/10.3390/ijms23031412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mironov V, Shchugoreva IA, Artyushenko PV, Morozov D, Borbone N, Oliviero G, Zamay TN, Moryachkov RV, Kolovskaya OS, Lukyanenko KA, Song Y, Merkuleva IA, Zabluda VN, Peters G, Koroleva LS, Veprintsev DV, Glazyrin YE, Volosnikova EA, Belenkaya SV, Esina TI, Isaeva AA, Nesmeyanova VS, Shanshin DV, Berlina AN, Komova NS, Svetlichnyi VA, Silnikov VN, Shcherbakov DN, Zamay GS, Zamay SS, Smolyarova T, Tikhonova EP, Chen KH ‐C., Jeng U, Condorelli G, Franciscis V, Groenhof G, Yang C, Moskovsky AA, Fedorov DG, Tomilin FN, Tan W, Alexeev Y, Berezovski MV, Kichkailo AS. Structure‐ and interaction‐based design of anti‐SARS‐CoV‐2 aptamers. Chem – Eur J 2022;28:e202104481. https://doi.org/10.1002/chem.202104481

  5. Dzuvor CKO, Tettey EL, Danquah MK. Aptamers as promising nanotheranostic tools in the COVID ‐19 pandemic era. WIREs Nanomed Nanobiotechnology 2022;14)(3):e1785. https://doi.org/10.1002/wnan.1785

  6. Shamsi A, Mohammad T, Anwar S, Amani S, Khan MS, Husain FM, Rehman MdT, Islam A, Hassan MI. Potential drug targets of SARS-CoV-2: from genomics to therapeutics. Int J Biol Macromol. 2021;177:1–9. https://doi.org/10.1016/j.ijbiomac.2021.02.071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cubuk J, Alston JJ, Incicco JJ, Singh S, Stuchell-Brereton MD, Ward MD, Zimmerman MI, Vithani N, Griffith D, Wagoner JA, Bowman GR, Hall KB, Soranno A, Holehouse AS. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nat Commun. 2021;12:1936. https://doi.org/10.1038/s41467-021-21953-3.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cui L, Wang H, Ji Y, Yang J, Xu S, Huang X, Wang Z, Qin L, Tien P, Zhou X, Guo D, Chen Y. The nucleocapsid protein of coronaviruses acts as a viral suppressor of RNA silencing in mammalian cells. J Virol. 2015;89:9029–43. https://doi.org/10.1128/JVI.01331-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chang C-K, Hsu Y-L, Chang Y-H, Chao F-A, Wu M-C, Huang Y-S, Hu C-K, Huang T-H. Multiple nucleic acid binding sites and intrinsic disorder of severe acute respiratory syndrome coronavirus nucleocapsid protein: implications for ribonucleocapsid protein packaging. J Virol. 2009;83:2255–64. https://doi.org/10.1128/JVI.02001-08.

    Article  CAS  PubMed  Google Scholar 

  10. Grossoehme NE, Li L, Keane SC, Liu P, Dann CE, Leibowitz JL, Giedroc DP. Coronavirus N protein N-terminal domain (NTD) specifically binds the transcriptional regulatory sequence (TRS) and melts TRS-cTRS RNA duplexes. J Mol Biol. 2009;394:544–57. https://doi.org/10.1016/j.jmb.2009.09.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shan D, Johnson JM, Fernandes SC, Suib H, Hwang S, Wuelfing D, Mendes M, Holdridge M, Burke EM, Beauregard K, Zhang Y, Cleary M, Xu S, Yao X, Patel PP, Plavina T, Wilson DH, Chang L, Kaiser KM, Nattermann J, Schmidt SV, Latz E, Hrusovsky K, Mattoon D, Ball AJ. N-protein presents early in blood, dried blood and saliva during asymptomatic and symptomatic SARS-CoV-2 infection. Nat Commun. 2021;12:1931. https://doi.org/10.1038/s41467-021-22072-9.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kamat V, Rafique A. Designing binding kinetic assay on the bio-layer interferometry (BLI) biosensor to characterize antibody-antigen interactions. Anal Biochem. 2017;536:16–31. https://doi.org/10.1016/j.ab.2017.08.002.

    Article  CAS  PubMed  Google Scholar 

  13. Petersen R. Strategies using bio-layer interferometry biosensor technology for vaccine research and development. Biosensors. 2017;7:49. https://doi.org/10.3390/bios7040049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shah NB, Duncan TM. Bio-layer interferometry for measuring kinetics of protein-protein interactions and allosteric ligand effects. J Vis Exp. 2014;84:e51383. https://doi.org/10.3791/51383.

    Article  CAS  Google Scholar 

  15. Krylov SN. Kinetic CE: foundation for homogeneous kinetic affinity methods. Electrophoresis. 2007;28:69–88. https://doi.org/10.1002/elps.200600577.

    Article  CAS  PubMed  Google Scholar 

  16. Henk H. Lauer, Gerard P. Rozing High performance capillary electrophoresis: a primer, 2nd ed. Agilent Technologies; 2018. p. 50. https://www.agilent.com/Library/primers/Public/5990-3777EN.pdf

  17. Mendonsa SD, Bowser MT. In vitro evolution of functional DNA using capillary electrophoresis. J Am Chem Soc. 2004;126:20–1. https://doi.org/10.1021/ja037832s.

    Article  CAS  PubMed  Google Scholar 

  18. Mosing RK, Mendonsa SD, Bowser MT. Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal Chem. 2005;77:6107–12. https://doi.org/10.1021/ac050836q.

    Article  CAS  PubMed  Google Scholar 

  19. Berezovski M, Drabovich A, Krylova SM, Musheev M, Okhonin V, Petrov A, Krylov SN. Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. J Am Chem Soc. 2005;127:3165–71. https://doi.org/10.1021/ja042394q.

    Article  CAS  PubMed  Google Scholar 

  20. Hirose K, Tsuchida M, Asakura H, Wakui K, Yoshimoto K, Iida K, Sato M, Shibukawa M, Suganuma M, Saito S. A single-round selection of selective DNA aptamers for mammalian cells by polymer-enhanced capillary transient isotachophoresis. Analyst. 2017;142:4030–8. https://doi.org/10.1039/C7AN00909G.

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Yang G, Li Z, Mohammed I, Zhao L, Wei W, Xiao H, Guo W, Zhao Y, Qu F, Huang Y. Identification of SARS-CoV-2-against aptamer with high neutralization activity by blocking the RBD domain of spike protein 1. Signal Transduct Target Ther. 2021;6:227. https://doi.org/10.1038/s41392-021-00649-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guo X, Chen G. Capillary electrophoresis-based methodology for screening of oligonucleotide aptamers. Biomed Chromatogr. 2021;35: e5109. https://doi.org/10.1002/bmc.5109.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang L, Fang X, Liu X, Ou H, Zhang H, Wang J, Li Q, Cheng H, Zhang W, Luo Z. Discovery of sandwich type COVID-19 nucleocapsid protein DNA aptamers. Chem Commun. 2020;56:10235–8. https://doi.org/10.1039/D0CC03993D.

    Article  CAS  Google Scholar 

  24. Gao T, Gao Y, Liu X, Nie Z, Sun H, Lin K, Peng H, Wang S. Identification and functional analysis of the SARS-COV-2 nucleocapsid protein. BMC Microbiol. 2021;21:58. https://doi.org/10.1186/s12866-021-02107-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Konermann L. Addressing a common misconception: ammonium acetate as neutral pH “buffer” for native electrospray mass spectrometry. J Am Soc Mass Spectrom. 2017;28:1827–35. https://doi.org/10.1007/s13361-017-1739-3.

    Article  CAS  PubMed  Google Scholar 

  26. Petrov A, Okhonin V, Berezovski M, Krylov SN. Kinetic capillary electrophoresis (KCE): a conceptual platform for kinetic homogeneous affinity methods. J Am Chem Soc. 2005;127:17104–10. https://doi.org/10.1021/ja056232l.

    Article  CAS  PubMed  Google Scholar 

  27. Amini R, Zhang Z, Li J, Gu J, Brennan JD, Li Y. Aptamers for SARS-CoV-2: isolation, characterization, and diagnostic and therapeutic developments. Anal Sens. 2022;2: e202200012. https://doi.org/10.1002/anse.202200012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cho S-J, Woo H-M, Kim K-S, Oh J-W, Jeong Y-J. Novel system for detecting SARS coronavirus nucleocapsid protein using an ssDNA aptamer. J Biosci Bioeng. 2011;112:535–40. https://doi.org/10.1016/j.jbiosc.2011.08.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kang J, Jang H, Yeom G, Kim M-G. Ultrasensitive detection platform of disease biomarkers based on recombinase polymerase amplification with H-sandwich aptamers. Anal Chem. 2021;93:992–1000. https://doi.org/10.1021/acs.analchem.0c03822.

    Article  CAS  PubMed  Google Scholar 

  30. Gurcharan U. Characterization of aptamers binding to SARS-CoV-2 nucleocapsid (N) protein: a comparison of capillary electrophoresis and bio-layer interferometry, Dissertation from University of Ottawa; 2023. https://doi.org/10.20381/ruor-29458

Download references

Funding

This work was supported by the Canadian Institutes of Health Research grant OV1-170353.

Author information

Authors and Affiliations

Authors

Contributions

Gurcharan Uppal and Suttinee Poolsup: data collection, data analysis; writing, reviewing, and editing the original draft. Emil Zaripov and Yuxuan Gu: developing CE instrument. Maxim Berezovski: project conceptualization; reviewing and editing; supervision; funding acquisition.

Corresponding author

Correspondence to Maxim V. Berezovski.

Ethics declarations

Ethics approval

This research does not involve any human and/or animals.

Consent for publication

All the authors read and approved of the final manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Gurcharan K. Uppal and Suttinee Poolsup contributed equally to this work.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 361 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uppal, G.K., Poolsup, S., Zaripov, E. et al. Comparative analysis of aptamers binding to SARS-CoV-2 N protein using capillary electrophoresis and bio-layer interferometry. Anal Bioanal Chem 416, 1697–1705 (2024). https://doi.org/10.1007/s00216-024-05174-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-024-05174-3

Keywords

Navigation