Quantitative test for COVID-19 in the cardiovascular process: in silico gene-target cluster evaluation
Luiz Henrique Pontes dos Santos; Chad Eric Grueter; Vânia Marilande Ceccatto
Abstract
The relative lack of clinical knowledge revealed by the most recent pandemic caused by SARS-CoV-2 has highlighted the need for molecular knowledge in ‘omics disciplines and molecular databases, integrated with available and user-friendly virtual tools. The production of an RT-qPCR reaction cluster is a posteriori and must be planned based on the knowledge of several available sources: specialized literature and databases with laboratory medicine tools. However, the specificities of infection with the new virus would require the prior use and execution of techniques to obtain extensive expression profiles, such as next-generation sequencing (i.e., RNAseq). In this work, we cross-reference RT-qPCR and RNAseq resources from literature and the KEGG Disease Database (Kyoto Encyclopedia of Genes and Genomes) to provide comprehensive insights into COVID-19-related cardiovascular DEGs and gene-target relationships. Gene clusters were used to identify enriched pathways and compare the canonical metabolic pathways for COVID-19 cardiac quantitative evaluation. One hundred seventy-one genes were listed in 42 KEGG Disease entries, resulting in 194 enriched pathways, with seven annotated pathways showing statistically significant XD-scores. Some specific differentially expressed genes in transcriptional literature evaluations overlapped with the KEGG canonical cardiac processes. The KEGG Disease cardiovascular gene set showed six pathways linked to quantitative cardiac evaluation that are significantly enriched in COVID-19. Results indicated hypertrophic and dilated cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, and cardiac muscle contraction. The presence of specific sets of genes with links between gene clusters, overlaps of genes and processes, and subsets of compartmentalization represent different possibilities for metabolic pathways and gene targets related to cardiac damage pre- and post-COVID-19 infection.
Keywords
References
Adams, TE, Epa, V., Garrett, T., & Ward, C. W. (2000). Structure and function of the type 1 insulin-like growth factor receptor. Cellular and Molecular Life Sciences, 57(7), 1050-1093. http:// doi.org/10.1007/PL00000744. PMid:10961344.
Alves-Lopes, R., Neves, K. B., Anagnostopoulou, A., Rios, F. J., Lacchini, S., Montezano, A. C., & Touyz, R. M. (2020). Crosstalk between vascular redox and calcium signaling in hypertension involves TRPM2 (transient receptor potential melastatin 2) cation channel. Hypertension, 75(1), 139-149. http://doi.org/10.1161/ HYPERTENSIONAHA.119.13861. PMid:31735084.
Araya, J., Cambier, S., Morris, A., Finkbeiner, W., & Nishimura, S. L. (2006). Integrin-mediated transforming growth factor-β activation regulates homeostasis of the pulmonary epithelialmesenchymal trophic unit. American Journal of Pathology, 169(2), 405-415. http://doi.org/10.2353/ajpath.2006.060049. PMid:16877343.
Aronow, W. S. (2003). Treatment of unstable angina pectoris/nonST-segment elevation myocardial infarction in elderly patients. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 58(10), M927-M933. http://doi.org/10.1093/ gerona/58.10.M927. PMid:14570861.
Asadollahi, R., Oneda, B., Sheth, F., Azzarello-Burri, S., Baldinger, R., Joset, P., Latal, B., Knirsch, W., Desai, S., Baumer, A., Houge, G., Andrieux, J., & Rauch, A. (2013). Dosage changes of MED13L further delineate its role in congenital heart defects and intellectual disability. European Journal of Human Genetics, 21(10), 1100-1104. http://doi.org/10.1038/ejhg.2013.17. PMid:23403903.
Bakhru, S., Marathe, S., Saxena, M., Verma, S., Saileela, R., Dash, T. K., & Koneti, N. R. (2017). Transcatheter pulmonary valve perforation using chronic total occlusion wire in pulmonary atresia with intact ventricular septum. Annals of Pediatric Cardiology, 10(1), 5-10. http://doi.org/10.4103/0974-2069.197065. PMid:28163422.
Bansal, M. (2020). Cardiovascular disease and COVID-19. Diabetes & Metabolic Syndrome, 14(3), 247-250. http://doi.org/10.1016/j. dsx.2020.03.013. PMid:32247212.
Bhogal, N. K., Hasan, A., & Gorelik, J. (2018). The development of compartmentation of cAMP signaling in cardiomyocytes: the role of T-tubules and caveolae microdomains. Journal of Cardiovascular Development and Disease, 5(2), 25. http://doi.org/10.3390/ jcdd5020025. PMid:29751502.
Bos, J. M., Hebl, V. B., Oberg, A. L., Sun, Z., Herman, D. S., Teekakirikul, P., Seidman, J. G., Seidman, C. E., Dos Remedios, C. G., Maleszewski, J. J., Schaff, H. V., Dearani, J. A., Noseworthy, P. A., Friedman, P. A., Ommen, S. R., Brozovich, F. V., & Ackerman, M. J. (2020). Marked up-regulation of ACE2 in hearts of patients with obstructive hypertrophic cardiomyopathy: implications for SARS-CoV-2–mediated COVID-19. Mayo Clinic Proceedings, 95(7), 1354-1368. http://doi.org/10.1016/j.mayocp.2020.04.028. PMid:32448590.
Boztug, K., & Klein, C. (2011). Genetic etiologies of severe congenital neutropenia. Current Opinion in Pediatrics, 23(1), 21-26. http://doi.org/10.1097/MOP.0b013e32834262f8. PMid:21206270.
Buttarelli, M., Babini, G., Raspaglio, G., Filippetti, F., Battaglia, A., Ciucci, A., Ferrandina, G., Petrillo, M., Marino, C., Mancuso, M., Saran, A., Villani, M. E., Desiderio, A., D’Ambrosio, C., Scaloni, A., Scambia, G., & Gallo, D. (2019). A combined ANXA2-NDRG1- STAT1 gene signature predicts response to chemoradiotherapy in cervical cancer. Journal of Experimental & Clinical Cancer Research, 38(1), 1-17. http://doi.org/10.1186/s13046-019-1268-y. PMid:31242951.
Channappanavar, R., & Perlman, S. (2017). Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Seminars in Immunopathology, 39(5), 529- 539. http://doi.org/10.1007/s00281-017-0629-x. PMid:28466096.
Chen, E. Y., Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G. V., Clark, N. R., & Ma’ayan, A. (2013). Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics, 14, 128. http://doi.org/10.1186/1471-2105-14- S18-S1. PMid:23586463.
Chen, X., Zhabyeyev, P., Azad, A. K., Wang, W., Minerath, R. A., DesAulniers, J., Grueter, C. E., Murray, A. G., Kassiri, Z., Vanhaesebroeck, B., & Oudit, G. Y. (2019). Endothelial and cardiomyocyte PI3Kβ divergently regulate cardiac remodelling in response to ischaemic injury. Cardiovascular Research, 115(8), 1343-1356. http://doi.org/10.1093/cvr/cvy298. PMid:30496354.
Chen, E. Y., Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G. V., Clark, N. R., & Ma’ayan, A. (2013). Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics, 14, 128. PMid:23586463.
Chetaille, P., Preuss, C., Burkhard, S., Côté, J. M., Houde, C., Castilloux, J., Piché, J., Gosset, N., Leclerc, S., Wünnemann, F., Thibeault, M., Gagnon, C., Galli, A., Tuck, E., Hickson, G. R., El Amine, N., Boufaied, I., Lemyre, E., de Santa Barbara, P., Faure, S., Jonzon, A., Cameron, M., Dietz, H. C., Gallo-McFarlane, E., Benson, D. W., Moreau, C., Labuda, D., Zhan, S. H., Shen, Y., Jomphe, M., Jones, S. J., Bakkers, J., Andelfinger, G., & FORGE Canada Consortium (2014). Mutations in SGOL1 cause a novel cohesinopathy affecting heart and gut rhythm. Nature Genetics, 46(11), 1245-1249. http://doi.org/10.1038/ng.3113. PMid:25282101.
Chiodo, C., Morelli, C., Cavaliere, F., Sisci, D., & Lanzino, M. (2021). The other side of the coin: May androgens have a role in breast cancer risk? International Journal of Molecular Sciences, 23(1), 424. http://doi.org/10.3390/ijms23010424. PMid:35008851.
Coates, M., Lee, M. J., Norton, D., & MacLeod, A. S. (2019). The skin and intestinal microbiota and their specific innate immune systems. Frontiers in Immunology, 10, 2950. http://doi. org/10.3389/fimmu.2019.02950. PMid:31921196.
D’Cruz, R. J., Currier, A. W., & Sampson, V. B. (2020). Laboratory testing methods for novel severe acute respiratory syndromecoronavirus-2 (SARS-CoV-2). Frontiers in Cell and Developmental Biology, 8, 468. http://doi.org/10.3389/fcell.2020.00468. PMid:32582718.
Dennert, R., Crijns, H. J., & Heymans, S. (2008). Acute viral myocarditis. European Heart Journal, 29(17), 2073-2082. http:// doi.org/10.1093/eurheartj/ehn296. PMid:18617482.
Dewey, C. M., Spitler, K. M., Ponce, J. M., Hall, D. D., & Grueter, C. E. (2016). Cardiac-secreted factors as peripheral metabolic regulators and potential disease biomarkers. Journal of the American Heart Association, 5(6), e003101. http://doi. org/10.1161/JAHA.115.003101. PMid:27247337.
Digilio, M. C., Bernardini, L., Lepri, F., Giuffrida, M. G., Guida, V., Baban, A., Versacci, P., Capolino, R., Torres, B., De Luca, A., Novelli, A., Marino, B., & Dallapiccola, B. (2011). Ebstein anomaly: Genetic heterogeneity and association with microdeletions 1p36 and 8p23.1. American Journal of Medical Genetics. Part A, 155(9), 2196-2202. http://doi.org/10.1002/ajmg.a.34131. PMid:21815254.
Dobaczewski, M., Chen, W., & Frangogiannis, N. G. (2011). Transforming growth factor (TGF)-β signaling in cardiac remodeling. Journal of Molecular and Cellular Cardiology, 51(4), 600-606. http://doi.org/10.1016/j.yjmcc.2010.10.033. PMid:21059352.
Dunn, D. M., & Munger, J. (2020). Interplay between calcium and AMPK signaling in human cytomegalovirus infection. Frontiers in Cellular and Infection Microbiology, 10, 384. http://doi. org/10.3389/fcimb.2020.00384. PMid:32850483.
Fatkin, D., & Graham, R. M. (2002). Molecular mechanisms of inherited cardiomyopathies. Physiological Reviews, 82(4), 945-980. http:// doi.org/10.1152/physrev.00012.2002. PMid:12270949.
Finsterer, J., & Stöllberger, C. (2008). Primary myopathies and the heart. Scandinavian Cardiovascular Journal, 42(1), 9-24. http:// doi.org/10.1080/14017430701854953. PMid:18273731.
Fragakis, N., Iliadis, I., Papanastasiou, S., Lambrou, A., & Katsaris, G. (2007). Brugada type electrocardiographic changes induced by concomitant use of lithium and propafenone in patient with Wolff–Parkinson–White syndrome. Pacing and Clinical Electrophysiology, 30(6), 823-825. http://doi.org/10.1111/j.1540- 8159.2007.00762.x. PMid:17547624.
Freed, L. A., Levy, D., Levine, R. A., Larson, M. G., Evans, J. C., Fuller, D. L., Lehman, B., & Benjamin, E. J. (1999). Prevalence and clinical outcome of mitral-valve prolapse. The New England Journal of Medicine, 341(1), 1-7. http://doi.org/10.1056/ NEJM199907013410101. PMid:10387935.
Giudicessi, J. R., Ye, D., Kritzberger, C. J., Nesterenko, V. V., Tester, D. J., Antzelevitch, C., & Ackerman, M. J. (2012). Novel mutations in the KCND3-encoded Kv4. 3 K+ channel associated with autopsynegative sudden unexplained death. Human Mutation, 33(6), 989-997. http://doi.org/10.1002/humu.22058. PMid:22457051.
Glaab, E., Baudot, A., Krasnogor, N., Schneider, R., & Valencia, A. (2012). EnrichNet: network-based gene set enrichment analysis. Bioinformatics (Oxford, England), 28(18), i451-i457. http://doi. org/10.1093/bioinformatics/bts389. PMid:22962466.
Guan, W. J., Liang, W. H., Shi, Y., Gan, L. X., Wang, H. B., He, J. X., & Zhong, N. S. (2021). Chronic respiratory diseases and the outcomes of COVID-19: a nationwide retrospective cohort study of 39,420 cases. The Journal of Allergy and Clinical Immunology. In Practice, 9(7), 2645-2655.e14. http://doi.org/10.1016/j. jaip.2021.02.041. PMid:33684635.
Guo, T., Fan, Y., Chen, M., Wu, X., Zhang, L., He, T., Wang, H., Wan, J., Wang, X., & Lu, Z. (2020). Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiology, 5(7), 811-818. http://doi.org/10.1001/ jamacardio.2020.1017. PMid:32219356.
Haslak, F., Yildiz, M., Adrovic, A., Sahin, S., Koker, O., Aliyeva, A., Barut, K., & Kasapcopur, O. (2020). Management of childhoodonset autoinflammatory diseases during the COVID-19 pandemic. Rheumatology International, 40(9), 1423-1431. http://doi. org/10.1007/s00296-020-04645-x. PMid:32661928.
Haywood, K. M. (2020). A post COVID-19 future-tourism re-imagined and re-enabled. Tourism Geographies, 22(3), 599-609. http:// doi.org/10.1080/14616688.2020.1762120.
Heathcote, K., Braybrook, C., Abushaban, L., Guy, M., Khetyar, M. E., Patton, M. A., Carter, N. D., Scambler, P. J., & Syrris, P. (2005). Common arterial trunk associated with a homeodomain mutation of NKX2. 6. Human Molecular Genetics, 14(5), 585-593. http:// doi.org/10.1093/hmg/ddi055. PMid:15649947.
Heidecker, B., Kasper, E. K., Wittstein, I. S., Champion, H. C., Breton, E., Russell, S. D., Kittleson, M. M., Baughman, K. L., & Hare, J. M. (2008). Transcriptomic biomarkers for individual risk assessment in new-onset heart failure. Circulation, 118(3), 238-246. http:// doi.org/10.1161/CIRCULATIONAHA.107.756544. PMid:18591436.
Hickey, E. J., Jung, G., Williams, W. G., Manlhiot, C., Van Arsdell, G. S., Caldarone, C. A., Coles, J., & McCrindle, B. W. (2008). Congenital supravalvular aortic stenosis: defining surgical and nonsurgical outcomes. The Annals of Thoracic Surgery, 86(6), 1919-1927, discussion 1927. http://doi.org/10.1016/j. athoracsur.2008.08.031. PMid:19022009.
Ho, C. Y. (2012). Genetic considerations in hypertrophic cardiomyopathy. Progress in Cardiovascular Diseases, 54(6), 456- 460. http://doi.org/10.1016/j.pcad.2012.03.004. PMid:22687586.
Hornung, T. S., & Calder, L. (2010). Congenitally corrected transposition of the great arteries. Heart (British Cardiac Society), 96(14), 1154-1161. http://doi.org/10.1136/hrt.2008.150532. PMid:20610462.
Huang, Y. H., Jiang, D., & Huang, J. T. (2020). SARS-CoV-2 detected in cerebrospinal fluid by PCR in a case of COVID-19 encephalitis. Brain, Behavior, and Immunity, 87, 149. http://doi.org/10.1016/j. bbi.2020.05.012. PMid:32387508.
Hulot, J. S. (2020). COVID-19 in patients with cardiovascular diseases. Archives of Cardiovascular Diseases, 113(4), 225-226. http://doi. org/10.1016/j.acvd.2020.03.009. PMid:32245656.
Italia, L., Tomasoni, D., Bisegna, S., Pancaldi, E., Stretti, L., Adamo, M., & Metra, M. (2021). COVID-19 and heart failure: From epidemiology during the pandemic to myocardial injury, myocarditis, and heart failure sequelae. Frontiers in Cardiovascular Medicine, 8, 713560. http://doi.org/10.3389/ fcvm.2021.713560. PMid:34447795.
Kanehisa, M., & Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1), 27-30. https://www. genome.jp/kegg/disease/.
Khairy, P., Poirier, N., & Mercier, L. A. (2007). Univentricular heart. Circulation, 115(6), 800-812. http://doi.org/10.1161/ CIRCULATIONAHA.105.592378. PMid:17296869.
Kruse, M., Schulze-Bahr, E., Corfield, V., Beckmann, A., Stallmeyer, B., Kurtbay, G., Ohmert, I., Schulze-Bahr, E., Brink, P., & Pongs, O. (2009). Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. The Journal of Clinical Investigation, 119(9), 2737-2744. http:// doi.org/10.1172/JCI38292. PMid:19726882.
Lassance, L., Haghiac, M., Leahy, P., Basu, S., Minium, J., Zhou, J., Reider, M., Catalano, P. M., & Hauguel-de Mouzon, S. (2015). Identification of early transcriptome signatures in placenta exposed to insulin and obesity. American Journal of Obstetrics and Gynecology, 212(5), 647.e1-11. http://doi.org/10.1016/j. ajog.2015.02.026. PMid:25731694.
Lefkimmiatis, K., & Zaccolo, M. (2014). cAMP signaling in subcellular compartments. Pharmacology & Therapeutics, 143(3), 295-304. http://doi.org/10.1016/j.pharmthera.2014.03.008. PMid:24704321.
Liu, N., Napolitano, C., & Priori, S. G. (2013). Catecholaminergic polymorphic ventricular tachycardia. In I. Gussak, & C. Antzelevitch (Eds.), Electrical diseases of the heart (Vol. 1: Basic Foundations and Primary Electrical Diseases, pp. 551-560). Springer. https:// doi.org/10.1007/978-1-4471-4881-4_31.
Lin, X., Huo, Z., Liu, X., Zhang, Y., Li, L., Zhao, H., Yan, B., Liu, Y., Yang, Y., & Chen, Y. H. (2010). A novel GATA6 mutation in patients with tetralogy of Fallot or atrial septal defect. Journal of Human Genetics, 55(10), 662-667. http://doi.org/10.1038/ jhg.2010.84. PMid:20631719.
Liu, N., Ruan, Y., & Priori, S. G. (2008). Catecholaminergic polymorphic ventricular tachycardia. Progress in Cardiovascular Diseases, 51(1), 23-30. http://doi.org/10.1016/j.pcad.2007.10.005. PMid:18634915.
Luk, A., Ahn, E., Soor, G. S., & Butany, J. (2009). Dilated cardiomyopathy: a review. Journal of Clinical Pathology, 62(3), 219-225. http://doi.org/10.1136/jcp.2008.060731. PMid:19017683.
Madjid, M., Safavi-Naeini, P., Solomon, S. D., & Vardeny, O. (2020). Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiology, 5(7), 831-840. http://doi.org/10.1001/ jamacardio.2020.1286. PMid:32219363.
Marian, A. J., & Roberts, R. (2001). The molecular genetic basis for hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 33(4), 655-670. http://doi.org/10.1006/ jmcc.2001.1340. PMid:11273720.
Maron, B. J., Towbin, J. A., Thiene, G., Antzelevitch, C., Corrado, D., Arnett, D., Moss, A. J., Seidman, C. E., Young, J. B., American Heart Association, Council on Clinical Cardiology, Heart Failure and Transplantation Committee, Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups, & Council on Epidemiology and Prevention (2006). Contemporary definitions and classification of the cardiomyopathies: an American Heart Association scientific statement from the council on clinical cardiology, heart failure and transplantation committee; quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention. Circulation, 113(14), 1807-1816. http://doi. org/10.1161/CIRCULATIONAHA.106.174287. PMid:16567565.
Marwaha, B., Mahata, I., Kumar, N., Singh, G., & Amritphale, A. (2024). Clinical Predictors of Cardiac Arrest among COVID-19 Patients with Heart Failure. Cardiology and Cardiovascular Medicine, 8(4), 379-388. http://doi.org/10.26502/fccm.92920398.
Maslen, C. L. (2004). Molecular genetics of atrioventricular septal defects. Current Opinion in Cardiology, 19(3), 205-210. http:// doi.org/10.1097/00001573-200405000-00003. PMid:15096951.
Meng, Z., Chen, C., Cao, H., Wang, J., & Shen, E. (2019). Whole transcriptome sequencing reveals biologically significant RNA markers and related regulating biological pathways in cardiomyocyte hypertrophy induced by high glucose. Journal of Cellular Biochemistry, 120(1), 1018-1027. http://doi.org/10.1002/ jcb.27546. PMid:30242883.
Minerath, R. A., Hall, D. D., & Grueter, C. E. (2019). Targeting transcriptional machinery to inhibit enhancer-driven gene expression in heart failure. Heart Failure Reviews, 24(5), 725-741. http://doi.org/10.1007/s10741-019-09792-3. PMid:30972522.
Morrell, N. W., Bloch, D. B., Ten Dijke, P., Goumans, M. J. T., Hata, A., Smith, J., Yu, P. B., & Bloch, K. D. (2016). Targeting BMP signalling in cardiovascular disease and anaemia. Nature Reviews. Cardiology, 13(2), 106-120. http://doi.org/10.1038/ nrcardio.2015.156. PMid:26461965.
Müller, S., Raulefs, S., Bruns, P., Afonso-Grunz, F., Plötner, A., Thermann, R., Jäger, C., Schlitter, A. M., Kong, B., Regel, I., Roth, W. K., Rotter, B., Hoffmeier, K., Kahl, G., Koch, I., Theis, F. J., Kleeff, J., Winter, P., & Michalski, C. W. (2015). Next-generation sequencing reveals novel differentially regulated mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in pancreatic cancer. Molecular Cancer, 14, 94. http://doi.org/10.1186/s12943-015-0358-5. PMid:25910082.
Murthy, K. S., Reddy, K. P., Nagarajan, R., Goutami, V., & Cherian, K. M. (2010). Management of ventricular septal defect with pulmonary atresia and major aorto pulmonary collateral arteries: Challenges and controversies. Annals of Pediatric Cardiology, 3(2), 127-135. http://doi.org/10.4103/0974-2069.74040. PMid:21234191.
Napolitano, C., & Priori, S. G. (2006). Brugada syndrome. Orphanet Journal of Rare Diseases, 1(1), 1-6. http://doi.org/10.1186/1750- 1172-1-35. PMid:16972995.
Negro, A., Dodge-Kafka, K., & Kapiloff, M. S. (2008). Signalosomes as therapeutic targets. Progress in Pediatric Cardiology, 25(1), 51-56. http://doi.org/10.1016/j.ppedcard.2007.11.012. PMid:19343079.
Nishimura, S. L. (2009). Integrin-mediated transforming growth factor-β activation, a potential therapeutic target in fibrogenic disorders. American Journal of Pathology, 175(4), 1362-1370. http://doi.org/10.2353/ajpath.2009.090393. PMid:19729474.
Nuñez, M. A., Pauchard, A., & Ricciardi, A. (2020). Invasion science and the global spread of SARS-CoV-2. Trends in Ecology & Evolution, 35(8), 642-645. http://doi.org/10.1016/j.tree.2020.05.004. PMid:32487347.
Obler, D., Juraszek, A. L., Smoot, L. B., & Natowicz, M. R. (2008). Double outlet right ventricle: Aetiologies and associations. Journal of Medical Genetics, 45(8), 481-497. http://doi.org/10.1136/ jmg.2008.057984. PMid:18456715.
Okamaoto, K., Shirato, K., Nao, N., Saito, S., Kageyama, T., Hasegawa, H., Suzuki, T., Matsuyama, S., & Takeda, M. (2020). Assessment of Real-Time RT-PCR Kits for SARS-CoV-2 Detection. Japanese Journal of Infectious Diseases, 73(5), 366-368. http:// doi.org/10.7883/yoken.JJID.2020.108. PMid: 32350226.
Parvatiyar, M. S., Pinto, J. R., Dweck, D., & Potter, J. D. (2010). Cardiac troponin mutations and restrictive cardiomyopathy. BioMed Research International, 2010(1), 350706. http://doi. org/10.1155/2010/350706. PMid:20617149.
Peng, T., Wang, L., Zhou, S. F., & Li, X. (2010). Mutations of the GATA4 and NKX2. 5 genes in Chinese pediatric patients with non-familial congenital heart disease. Genetica, 138(11-12), 1231-1240. http:// doi.org/10.1007/s10709-010-9522-4. PMid:21110066.
Pertea, M. (2012). The human transcriptome: an unfinished story. Genes, 3(3), 344-360. http://doi.org/10.3390/genes3030344. PMid:22916334.
Posch, M. G., Perrot, A., Berger, F., & Özcelik, C. (2010). Molecular genetics of congenital atrial septal defects. Clinical Research in Cardiology; Official Journal of the German Cardiac Society, 99(3), 137-147. http://doi.org/10.1007/s00392-009-0095-0. PMid:20012542.
Protonotarios, N., & Tsatsopoulou, A. (2004). Naxos disease and Carvajal syndrome: cardiocutaneous disorders that highlight the pathogenesis and broaden the spectrum of arrhythmogenic right ventricular cardiomyopathy. Cardiovascular Pathology, 13(4), 185-194. http://doi.org/10.1016/j.carpath.2004.03.609. PMid:15210133.
Ranard, L. S., Fried, J. A., Abdalla, M., Anstey, D. E., Givens, R. C., Kumaraiah, D., Kodali, S. K., Takeda, K., Karmpaliotis, D., Rabbani, L. E., Sayer, G., Kirtane, A. J., Leon, M. B., Schwartz, A., Uriel, N., & Masoumi, A. (2020). Approach to acute cardiovascular complications in COVID-19 infection. Circulation: Heart Failure, 13(7), e007220. http://doi.org/10.1161/ CIRCHEARTFAILURE.120.007220. PMid:32500721.
Rybin, V. O., Pak, E., Alcott, S., & Steinberg, S. F. (2003). Developmental changes in β2-adrenergic receptor signaling in ventricular myocytes: the role of Gi proteins and caveolae microdomains. Molecular Pharmacology, 63(6), 1338-1348. http:// doi.org/10.1124/mol.63.6.1338. PMid:12761344.
Sarkozy, A., Conti, E., D’Agostino, R., Digilio, M. C., Formigari, R., Picchio, F., Marino, B., Pizzuti, A., & Dallapiccola, B. (2005). ZFPM2/FOG2 and HEY2 genes analysis in nonsyndromic tricuspid atresia. American Journal of Medical Genetics. Part A, 133A(1), 68-70. http://doi.org/10.1002/ajmg.a.30534. PMid:15643620.
Satoda, M., Zhao, F., Diaz, G. A., Burn, J., Goodship, J., Davidson, H. R., Pierpont, M. E., & Gelb, B. D. (2000). Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. Nature Genetics, 25(1), 42-46. http://doi.org/10.1038/75578. PMid:10802654.
Saurav, A., Smer, A., Abuzaid, A., Bansal, O., & Abuissa, H. (2015). Premature Ventricular Contraction–Induced Cardiomyopathy. Clinical Cardiology, 38(4), 251-258. http://doi.org/10.1002/ clc.22371. PMid:25678299.
Schulze-Bahr, E., Haverkamp, W., Wedekind, H., Rubie, C., Hördt, M., Borggrefe, M., Assmann, G., Breithardt, G., & Funke, H. (1997). Autosomal recessive long-QT syndrome (Jervell LangeNielsen syndrome) is genetically heterogeneous. Human Genetics, 100(5-6), 573-576. http://doi.org/10.1007/s004390050554. PMid:9341873.
Schwartz, P. J., Spazzolini, C., Crotti, L., Bathen, J., Amlie, J. P., Timothy, K., Shkolnikova, M., Berul, C. I., Bitner-Glindzicz, M., Toivonen, L., Horie, M., Schulze-Bahr, E., & Denjoy, I. (2006). The Jervell and Lange-Nielsen syndrome: natural history, molecular basis, and clinical outcome. Circulation, 113(6), 783-790. http:// doi.org/10.1161/CIRCULATIONAHA.105.592899. PMid:16461811.
Shi, Z., & Ganji, V. (2020). Dietary patterns and cardiovascular disease risk among Chinese adults: a prospective cohort study. European Journal of Clinical Nutrition, 74(12), 1725-1735. http:// doi.org/10.1038/s41430-020-0668-6. PMid:32506113.
Singh, A., Shaikh, A., Singh, R., & Singh, A. K. (2020). COVID-19: From bench to bed side. Diabetes & Metabolic Syndrome, 14(4), 277- 281. http://doi.org/10.1016/j.dsx.2020.04.011. PMid:32283498.
Skroblin, P., Grossmann, S., Schäfer, G., Rosenthal, W., & Klussmann, E. (2010). Mechanisms of protein kinase A anchoring. International Review of Cell and Molecular Biology, 283, 235-330. http://doi. org/10.1016/S1937-6448(10)83005-9. PMid:20801421.
Song, X., Zhang, T., Wang, X., Liao, X., Han, C., Yang, C., Su, K., Cao, W., Gong, Y., Chen, Z., Han, Q., & Li, J. (2018). Distinct diagnostic and prognostic values of kinesin family member genes expression in patients with breast cancer. Medical Science Monitor, 24, 9442- 9464. http://doi.org/10.12659/MSM.913401. PMid:30593585.
Soor, G. S., Luk, A., Ahn, E., Abraham, J. R., Woo, A., RalphEdwards, A., & Butany, J. (2009). Hypertrophic cardiomyopathy: Current understanding and treatment objectives. Journal of Clinical Pathology, 62(3), 226-235. http://doi.org/10.1136/ jcp.2008.061655. PMid:18930982.
Spitler, K. M., Ponce, J. M., Oudit, G. Y., Hall, D. D., & Grueter, C. E. (2017). Cardiac Med1 deletion promotes early lethality, cardiac remodeling, and transcriptional reprogramming. American Journal of Physiology. Heart and Circulatory Physiology, 312(4), H768-H780. http://doi.org/10.1152/ajpheart.00728.2016. PMid:28159809.
Thygesen, K., Alpert, J. S., Jaffe, A. S., Simoons, M. L., Chaitman, B. R., & White, H. D. (2012). Third universal definition of myocardial infarction. Circulation, 126(16), 2020-2035. https:// doi.org/10.1161/CIR.0b013e31826e1058.
Tsai, C. T., Lai, L. P., Hwang, J. J., Lin, J. L., & Chiang, F. T. (2008). Molecular genetics of atrial fibrillation. Journal of the American College of Cardiology, 52(4), 241-250. http://doi.org/10.1016/j. jacc.2008.02.072. PMid:18634977.
Tsui, B. M., & Wang, Y. (2005). High-resolution molecular imaging techniques for cardiovascular research. Journal of Nuclear Cardiology, 12(3), 261-267. http://doi.org/10.1016/j. nuclcard.2005.03.005. PMid:15944530.
Vinciguerra, M., Romiti, S., Fattouch, K., De Bellis, A., & Greco, E. (2020). Atherosclerosis as pathogenetic substrate for Sars-Cov2 cytokine storm. Journal of Clinical Medicine, 9(7), 2095. http:// doi.org/10.3390/jcm9072095. PMid:32635302.
Wang, X., Fang, J., Zhu, Y., Chen, L., Ding, F., Zhou, R., Ge, L., Wang, F., Chen, Q., Zhang, Y., & Zhao, Q. (2020). Clinical characteristics of non- critically ill patients with novel coronavirus infection (COVID-19) in a Fangcang Hospital. Clinical Microbiology and Infection, 26(8), 1063- 1068. http://doi.org/10.1016/j.cmi.2020.03.032. PMid:32251842.
Wilkins, B. J., & Molkentin, J. D. (2004). Calcium–calcineurin signaling in the regulation of cardiac hypertrophy. Biochemical and Biophysical Research Communications, 322(4), 1178-1191. http://doi.org/10.1016/j.bbrc.2004.07.121. PMid:15336966.
Zareba, W., & Cygankiewicz, I. (2008). Long QT syndrome and short QT syndrome. Progress in Cardiovascular Diseases, 51(3), 264-278. http://doi.org/10.1016/j.pcad.2008.10.006. PMid:19026859.
Zhang, D., Wang, Y., Lin, H., Sun, Y., Wang, M., Jia, Y., Yu, X., Jiang, H., Xu, W., Sun, J. P., & Xu, Z. (2020). Function and therapeutic potential of G protein-coupled receptors in epididymis. British Journal of Pharmacology, 177(24), 5489-5508. http://doi. org/10.1111/bph.15252. PMid:32901914.
Zhu, J., Guo, J., Xu, Y., & Chen, X. (2020). Viral dynamics of SARSCoV-2 in saliva from infected patients. The Journal of Infection, 81(3), e48-e50. http://doi.org/10.1016/j.jinf.2020.06.059. PMid:32593658.
Zuberi, Z., Nobles, M., Sebastian, S., Dyson, A., Lim, S. Y., Breckenridge, R., Birnbaumer, L., & Tinker, A. (2010). Absence of the inhibitory G-protein Gαi2 predisposes to ventricular cardiac arrhythmia. Circulation: Arrhythmia and Electrophysiology, 3(4), 391-400. http://doi.org/10.1161/CIRCEP.109.894329. PMid:20495013.
Submitted date:
04/24/2024
Accepted date:
01/01/2025