Home Potential applicability of Schiff bases and their metal complexes during COVID-19 pandemic – a review
Article
Licensed
Unlicensed Requires Authentication

Potential applicability of Schiff bases and their metal complexes during COVID-19 pandemic – a review

  • Nidhi Aggarwal ORCID logo EMAIL logo and Suman Maji
Published/Copyright: January 21, 2022

Abstract

The rapid growth and revolution in the area of emerging therapeutics has been able to save the life of millions of patients globally. Besides these developments, the microbes are consistently struggling for their own survival and hence becoming quite more sturdy and incurable to existing drugs. Covid-19 virus and Black Fungus are recent examples of failure of medical preparations and strength of these viruses beyond the imagination of medical practitioners. Henceforth the study has made an extensive survey of exiting literature on heterocyclic schiff bases and their transition metal complexes to look for their potential applicability as antimicrobial agents. The inherent physiognomies of the essential properties of these transition metal complexes including thermodynamic, kinetic and chelating are comparatively modifiable as per requirements. The study has found that the biological applications of these transition metal complexes are well suited to be used as antibacterial and antifungal agents.


Corresponding author: Nidhi Aggarwal, Department of Chemistry, Arya College, Ludhiana, Punjab, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abd El-Halim, H. F.; Mohamed, G. G.; Khalil, E. A. M. Synthesis, spectral, thermal and biological studies of mixed ligand complexes with newly prepared Schiff base and 1,10-phenanthroline ligands. J. Mol. Struct. 2017, 1146, 153–163; https://doi.org/10.1016/j.molstruc.2017.05.092.Search in Google Scholar

Agwara, M. O.; Ndifon, P. T.; Ndosiri, N. B.; Paboudam, A. G.; Yufanyi, D. M.; Mohamadou, A. Synthesis, characterisation and antimicrobial activities of cobalt(II), copper(II) and zinc(II) mixed-ligand complexes containing 1,10-phenanthroline and 2,2′-bipyridine. Bull. Chem. Soc. Ethiop. 2010, 24(3), 383–389; https://doi.org/10.4314/bcse.v24i3.60680.Search in Google Scholar

Ahmad Shiekh, R.; Ab Rahman, I.; Ahmad Malik, M.; Luddin, N.; Malik Masudi, A.; Ahmed Al-Thabaiti, S. Transition metal complexes with mixed nitrogen-sulphur (N–S) donor macrocyclic Schiff base ligand: synthesis, spectral, electrochemical and antimicrobial studies. Int. J. Electrochem. Sci. 2013, 8, 6972–6987.Search in Google Scholar

Al-noor, T. H.; Shinan, G. T. Synthesis and characterization of mixed-ligand complexes of oxalic acid and trimethoprim with Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cr(III) ions: and antimicrobial activities. Res. J. Pharmaceut. Biol. Chem. Sci. 2017, 8(3), 1375–1381.Search in Google Scholar

Alshammari, M. B.; Ramadan, M.; Aly, A. A.; El-Sheref, E. M.; Bakht, M. A.; Ibrahim, M. A. A.; Shawky, A. M. Synthesis of potentially new Schiff bases of N-substituted-2-quinolonylacetohydrazides as anti-COVID-19 agents. J. Mol. Struct. 2021, 1230, 129649; https://doi.org/10.1016/j.molstruc.2020.129649.Search in Google Scholar PubMed PubMed Central

Anjaneyulu, Y.; Rao, R. P. Preparation, characterization and antimicrobial activity studies on some ternary complexes of Cu(II) with acetylacetone and various salicylic acids. Synth. React. Inorg. Met. Org. Chem. 1986, 16(2), 257–272; https://doi.org/10.1080/00945718608057530.Search in Google Scholar

Arounaguiri, S.; Easwaramoorthy, D.; Ashokkumar, A.; Dattagupta, A.; Maiya, B. G. Cobalt(III), nickel(II) and ruthenium(II) complexes of 1,10-phenanthroIine family of ligands: DNA binding and photocleavage studies. Proc. Indian Acad. Sci. Chem. Sci. 2000, 112(1), 1–17; https://doi.org/10.1007/bf02704295.Search in Google Scholar

Asadi, M.; Asadi, Z.; Zarei, L.; Sadi, S. B.; Amirghofran, Z. Affinity to bovine serum albumin and anticancer activity of some new water-soluble metal Schiff base complexes. Spectrochim. Acta Mol. Biomol. Spectrosc. 2014, 133, 697–706; https://doi.org/10.1016/j.saa.2014.05.031.Search in Google Scholar PubMed

Bagherzadeh, M.; Zare, M. Synthesis and characterization of NaY zeolite-encapsulated Mn-hydrazone Schiff base: an efficient and reusable catalyst for oxidation of olefins. J. Coord. Chem. 2012, 65(22), 4054–4066; https://doi.org/10.1080/00958972.2012.731595.Search in Google Scholar

Bose, R. N.; Akbar Ali, M. Transition metal complexes of furfural and benzil Schiff bases derived from s-benzyldithiocarbazate. Polyhedron 1984, 3(5), 517–522.10.1016/S0277-5387(00)88081-XSearch in Google Scholar

Carballo, R.; Covelo, B.; Vázquez-López, E. M.; García-Martínez, E.; Castiñeiras, A.; Niclós, J. Mixed-ligand complexes of zinc(II) with α-hydroxycarboxylates and aromatic N–N donor ligands: synthesis, crystal structures and effect of weak interactions on their crystal packing. Z. Anorg. Allg. Chem. 2005, 631(4), 785–792; https://doi.org/10.1002/zaac.200400444.Search in Google Scholar

Cella, R.; Stefani, H. A. Ultrasound in heterocycles chemistry. Tetrahedron 2009, 65(13), 2619–2641; https://doi.org/10.1016/j.tet.2008.12.027.Search in Google Scholar

Da Silva, C. M.; Da Silva, D. L.; Modolo, L. V.; Alves, R. B.; De Resende, M. A.; Martins, C. V. B.; De Fátima, Â. Schiff bases: a short review of their antimicrobial activities. J. Adv. Res. 2011, 2(Issue 1), 1–8; https://doi.org/10.1016/j.jare.2010.05.004.Search in Google Scholar

De Lima, R. L.; De Souza Teixeira, L. R.; Gomes Carneiro, T. M.; Beraldo, H. Nickel(II), copper(I) and copper(II) complexes of bidentate heterocyclic thiosemicarbazones. J. Braz. Chem. Soc. 1999, 10(3), 184–188; https://doi.org/10.1590/s0103-50531999000300005.Search in Google Scholar

Desai, M. N.; Talati, J. D.; Shah, N. K. Schiff bases of ethylenediamine/triethylenetetramine with benzaldehyde/cinnamic aldehyde/salicylaldehyde as corrosion inhibitors of zinc in sulphuric acid. Anti-corrosion Methods & Mater. 2008, 55(1), 27–37; https://doi.org/10.1108/00035590810842807.Search in Google Scholar

Douche, D.; Sert, Y.; Brandán, S. A.; Kawther, A. A.; Bilmez, B.; Dege, N.; Louzi, A. E.; Bougrin, K.; Karrouchi, K.; Himmi, B. 5-((1H-imidazol-1-yl)methyl)quinolin-8-ol as potential antiviral SARS-CoV-2 candidate: synthesis, crystal structure, Hirshfeld surface analysis, DFT and molecular docking studies. J. Mol. Struct. 2021, 1232, 130005; https://doi.org/10.1016/j.molstruc.2021.130005.Search in Google Scholar PubMed PubMed Central

El-Ajaily, M. M.; Maihub, A. A.; Mahanta, U. K.; Badhei, G.; Mohapatra, R. K.; Das, P. K. Mixed ligand complexes containing Schiff bases and their biological activities: a short review. Rasayan J. Chem. 2018, 11(Issue 1), 166–174. Rasayan Journal of Chemistry, c/o Dr. Pratima Sharma; https://doi.org/10.7324/RJC.2018.1111988.Search in Google Scholar

Gaballa, A. S.; Asker, M. S.; Barakat, A. S.; Teleb, S. M. Synthesis, characterization and biological activity of some platinum(II) complexes with Schiff bases derived from salicylaldehyde, 2-furaldehyde and phenylenediamine. Spectrochim. Acta Mol. Biomol. Spectrosc. 2007, 67(1), 114–121; https://doi.org/10.1016/j.saa.2006.06.031.Search in Google Scholar PubMed

Gupta, M.; Srivastava, M. N. Synthesis and characterization of mixed ligand complexes of copper(II), nickel(II), cobalt(II) and zinc(II) with glycine and uracil or 2-thiouracil. Polyhedron 1985, 4(3), 475–479; https://doi.org/10.1016/s0277-5387(00)87013-8.Search in Google Scholar

Gurumoorthy, P.; Ravichandran, J.; Kalilur Rahiman, A. Mixed-ligand binuclear copper(II) complex of 5-methylsalicylaldehyde and 2,2-bipyridyl: synthesis, crystal structure, DNA binding and nuclease activity. J. Chem. Sci. 2014, 126(Issue 3), 783–792; https://doi.org/10.1007/s12039-014-0607-y.Search in Google Scholar

Hamil, A. M.; Khalifa, K. M.; Al-Houni, A.; El-Ajaily, M. M. Synthesis, spectroscopic investigation and antiactivity activity of Schiff base complexes of cobalt (II) and copper (II) ions. Rasayan J. Chem. 2009, 2(2), 261–266.Search in Google Scholar

Han, T. Y.; Guan, T. S.; Iqbal, M. A.; Haque, R. A.; Sharmila Rajeswari, K.; Khadeer Ahamed, M. B.; Abdul Majid, A. M. S. Synthesis of water soluble copper(II) complexes: crystal structures, DNA binding, oxidative DNA cleavage, and in vitro anticancer studies. Med. Chem. Res. 2014, 23(5), 2347–2359; https://doi.org/10.1007/s00044-013-0824-9.Search in Google Scholar

Harinath, Y.; Harikishore Kumar Reddy, D.; Naresh Kumar, B.; Apparao, C.; Seshaiah, K. Synthesis, spectral characterization and antioxidant activity studies of a bidentate Schiff base, 5-methyl thiophene-2-carboxaldehyde-carbohydrazone and its Cd(II), Cu(II), Ni(II) and Zn(II) complexes. Spectrochim. Acta Mol. Biomol. Spectrosc. 2013, 101, 264–272; https://doi.org/10.1016/j.saa.2012.09.085.Search in Google Scholar PubMed

Jayalakshmi, R.; Rajavel, R. Elaborated studies on Schiff base homo-binuclear Cu(II) and Co(II) complexes, spectral, thermal, P-XRD and biocidal studies. J. Adv. Appl. Sci. Res. 2017, 1–16.10.46947/joaasr17201738Search in Google Scholar

Jesmin, M.; Khairul Islam, M.; Mohsin Ali, S. M. Analgesic and anti-inflammatory activities of some transition metal Schiff base complexes. Int. Lett. Chem. Phys. Astron. 2014, 8, 64–72; https://doi.org/10.18052/www.scipress.com/ilcpa.27.64.Search in Google Scholar

Karges, J.; Cohen, S. M. Metal complexes as antiviral agents for SARS-CoV-2. ChemBioChem 2021, 22(16), 2600–2607; https://doi.org/10.1002/cbic.202100186.Search in Google Scholar PubMed PubMed Central

Kathiresan, S.; Mugesh, S.; Murugan, M.; Ahamed, F.; Annaraj, J. Mixed-ligand copper(II)-phenolate complexes: structure and studies on DNA/protein binding profiles, DNA cleavage, molecular docking and cytotoxicity. RSC Adv. 2016, 6(3), 1810–1825; https://doi.org/10.1039/c5ra20607c.Search in Google Scholar

Kitamura, F.; Sawaguchi, K.; Mori, A.; Takagi, S.; Suzuki, T.; Kobayashi, A.; Kato, M.; Nakajima, K. Coordination structure conversion of hydrazone-palladium(II) complexes in the solid state and in solution. Inorg. Chem. 2015, 54(17), 8436–8448; https://doi.org/10.1021/acs.inorgchem.5b01128.Search in Google Scholar PubMed

Krishnamoorthy, P.; Sathyadevi, P.; Butorac, R. R.; Cowley, A. H.; Bhuvanesh, N. S. P.; Dharmaraj, N. Copper(i) and nickel(ii) complexes with 1:1 versus 1:2 coordination of ferrocenyl hydrazone ligands: do the geometry and composition of complexes affect DNA binding/cleavage, protein binding, antioxidant and cytotoxic activities? Dalton Trans. 2012, 41(15), 4423–4436; https://doi.org/10.1039/c2dt11938b.Search in Google Scholar PubMed

Kumar, S. L.; Sharma, T. R. Synthesis, structure and luminescent properties of Ti(III),V(III) transition metal polymeric macrocyclic complexes derived from phenanthroline and biphenyl groups. Orient. J. Chem. 2012, 28(2), 963–967; https://doi.org/10.13005/ojc/280243.Search in Google Scholar

Lawrence, D.; Vaidyanathan, V. G.; Nair, B. U. Synthesis, characterization and DNA binding studies of two mixed ligand complexes of ruthenium(II). J. Inorg. Biochem. 2006, 100(7), 1244–1251; https://doi.org/10.1016/j.jinorgbio.2006.02.003.Search in Google Scholar PubMed

Lian, W. J.; Wang, X. T.; Xie, C. Z.; Tian, H.; Song, X. Q.; Pan, H. T.; Qiao, X.; Xu, J. Y. Mixed-ligand copper(II) Schiff base complexes: the role of the co-ligand in DNA binding, DNA cleavage, protein binding and cytotoxicity. Dalton Trans. 2016, 45(22), 9073–9087; https://doi.org/10.1039/c6dt00461j.Search in Google Scholar PubMed

Liu, H.; Li, L.; Guo, Q.; Dong, J.; Li, J. Synthesis, crystal structure, DNA- and albumin-binding properties of a chromium(III) complex with 1,10-phenanthroline and a Schiff base derived from glycine. Transit. Met. Chem. 2013, 38(4), 441–448; https://doi.org/10.1007/s11243-013-9709-5.Search in Google Scholar

Lovely, K. L. P. S.; Christudhas, M. Synthesis, characterization and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of 3-pyridine carboxaldehyde and L-tryptophan. J. Chem. Pharmaceut. Res. 2013, 5(4), 154–159.Search in Google Scholar

Mahal, A.; Wu, P.; Jiang, Z. H.; Wei, X. Schiff bases of tetrahydrocurcumin as potential anticancer agents. ChemistrySelect 2019, 4(1), 366–369; https://doi.org/10.1002/slct.201803159.Search in Google Scholar

Mahalakshmi, R.; Raman, N. A therapeutic journey of mixed ligand complexes containing 1,10-phenanthroline derivatives: a review. Int. J. Curr. Pharmaceut. Res. 2016, 8(3), 1–6.Search in Google Scholar

Mahmoud, W. H.; Mohamed, G. G.; El-Dessouky, M. M. I. M. M. I. Synthesis, characterization and in vitro biological activity of mixed transition metal complexes of lornoxicam with 1,10-phenanthroline. Int. J. Electrochem. Sci. 2014, 9(3), 1415–1438.Search in Google Scholar

Mahmoud, M. J.; Numan, A. T.; Al-Obaidi, O. B. M. S. Synthetic and characterization of some new Schiff bases complexes with Co II, Ni II, Cu II and Pd II ions. J. Al-Nahrain Univ. Sci. 2013, 16(1), 28–36.10.22401/JNUS.16.1.05Search in Google Scholar

Maihub, A. A.; Alassbaly, F. S.; El-Ajaily, M. M.; Etorki, A. M. Modification on synthesis of mixed ligand chelates by using di- and trivalent transition metal ions with Schiff base as primary ligand. Green Sustain. Chem. 2014, 04(03), 103–110; https://doi.org/10.4236/gsc.2014.43015.Search in Google Scholar

Malik, M. A.; Dar, O. A.; Gull, P.; Wani, M. Y.; Hashmi, A. A. Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy. MedChemComm 2018, 9(3), 409–436; https://doi.org/10.1039/c7md00526a.Search in Google Scholar PubMed PubMed Central

Malik, Y. S.; Sircar, S.; Bhat, S.; Sharun, K.; Dhama, K.; Dadar, M.; Tiwari, R.; Chaicumpa, W. Emerging novel coronavirus (2019-nCoV)—current scenario, evolutionary perspective based on genome analysis and recent developments. Vet. Q. 2020, 40(1), 68–76; https://doi.org/10.1080/01652176.2020.1727993.Search in Google Scholar PubMed PubMed Central

Mansour, M. A.; Aboulmagd, A. M.; Abdel-Rahman, H. M. Quinazoline-Schiff base conjugates: in silico study and ADMET predictions as multi-target inhibitors of coronavirus (SARS-CoV-2) proteins. RSC Adv. 2020, 10(56), 34033–34045; https://doi.org/10.1039/d0ra06424f.Search in Google Scholar PubMed PubMed Central

Maurya, R. C.; Patel, P.; Rajput, S. Synthesis and characterization of mixed-ligand complexes of Cu(II), Ni(II), Co(II), Zn(II), Sm(III), and U(VI)O2, with a Schiff base derived from the sulfa drug sulfamerazine and 2,2′-bipyridine. Synth. React. Inorg. Met. Org. Chem. 2003, 33(5), 801–816; https://doi.org/10.1081/sim-120021647.Search in Google Scholar

Mihai, S.; Negoiu, M. Synthesis and characterization of Ni(II), Pt(IV), Pd(II), Co(II), Au(III), Cu(II) complexes with mixed ligands. Revista de Chimie 2009, 60(3), 222–225.Search in Google Scholar

Mishra, V. R.; Ghanavatkar, C. W.; Mali, S. N.; Chaudhari, H. K.; Sekar, N. Schiff base clubbed benzothiazole: synthesis, potent antimicrobial and MCF-7 anticancer activity, DNA cleavage and computational study. J. Biomol. Struct. Dyn. 2020, 38(6), 1772–1785; https://doi.org/10.1080/07391102.2019.1621213.Search in Google Scholar PubMed

Mittal, P.; Joshi, S.; Panwar, V.; Uma, V. Biologically active Co (II), Ni (II), Cu (II) and Mn(II) complexes of Schiff bases derived from vinyl aniline and heterocyclic aldehydes. Int. J. ChemTech Res. 2009, 1(2), 225–232.Search in Google Scholar

Mohamed, G. G.; Omar, M. M.; Hindy, A. M. M. Synthesis, characterization and biological activity of some transition metals with Schiff base derived from 2-thiophene carboxaldehyde and aminobenzoic acid. Spectrochim. Acta Mol. Biomol. Spectrosc. 2005, 62(4–5), 1140–1150; https://doi.org/10.1016/j.saa.2005.03.031.Search in Google Scholar PubMed

Munteanu, A. C.; Uivarosi, V. Ruthenium complexes in the fight against pathogenic microorganisms. An extensive review. Pharmaceutics 2021, 13(6), 1–51; https://doi.org/10.3390/pharmaceutics13060874.Search in Google Scholar PubMed PubMed Central

Nagajothi, A.; Kiruthika, A.; Chitra, S.; Parameswari, K. Synthesis and characterization of tetradentate Co(II) Schiff base complexes: antimicrobial & DNA cleavage studies. Int. J. Res. Pharmaceut. Biomed. Sci. 2012, 3(4), 1768–1778.Search in Google Scholar

Odeh, I. N. Synthesis, Characterization, and CT-DNA Interactions of Novel Complexes of (Copper(II)\\tetradentate SNNS Schiff bases); AN-Najah National University: Nablus, Palestine, 2016.Search in Google Scholar

Padhyé, S.; Kauffman, G. B. Transition metal complexes of semicarbazones and thiosemicarbazones. Coord. Chem. Rev. 1985, 63(C), 127–160; https://doi.org/10.1016/0010-8545(85)80022-9.Search in Google Scholar

Pal, M.; Musib, D.; Roy, M. Transition metal complexes as potential tools against SARS-CoV-2: an: in silico approach. New J. Chem. 2021, 45(4), 1924–1933; https://doi.org/10.1039/d0nj04578k.Search in Google Scholar

Pelosi, G. Thiosemicarbazone metal complexes: from structure to activity. Open Crystallogr. J. 2010, 3, 16–28; https://doi.org/10.1021/jm1007616.Search in Google Scholar PubMed

Pelosi, G.; Bisceglie, F.; Bignami, F.; Ronzi, P.; Schiavone, P.; Re, M. C.; Casoli, C.; Pilotti, E. Antiretroviral activity of thiosemicarbazone metal complexes. J. Med. Chem. 2010, 53(24), 8765–8769; https://doi.org/10.1021/jm1007616.Search in Google Scholar

Poulter, N.; Donaldson, M.; Mulley, G.; Duque, L.; Waterfield, N.; Shard, A. G.; Spencer, S.; Jenkins, A. T. A.; Johnson, A. L. Plasma deposited metal Schiff-base compounds as antimicrobials. New J. Chem. 2011, 35(7), 1477–1484; https://doi.org/10.1039/c1nj20091g.Search in Google Scholar

Prasad, B. B.; Sah, R. A biomimicing approach to the mixed ligand complexes of bivalent transition metal. Int. J. Appl. Sci. Biotechnol. 2013, 1(1), 16–20; https://doi.org/10.3126/ijasbt.v1i1.7922.Search in Google Scholar

Prashanthi, Y.; Kiranmai, K.; Ira; Sathish Kumar, S. K.; Chityala, V. K.; Shivaraj. Spectroscopic characterization and biological activity of mixed ligand complexes of ni(ii) with 1,10-phenanthroline and heterocyclic Schiff bases. Bioinorgan. Chem. Appl. 2012, 2012, 1–8; https://doi.org/10.1155/2012/948534.Search in Google Scholar PubMed PubMed Central

Radfard, R.; Abedi, A. Synthesis and characterization of new Schiff bases of ethylenediamine and benzaldehyde derivatives, along with their iron complexes. J. Appl. Chem. Res. 2015, 9, 59–65.Search in Google Scholar

Rajendiran, V.; Karthik, R.; Palaniandavar, M.; Stoeckli-Evans, H.; Periasamy, V. S.; Akbarsha, M. A.; Srinag, B. S.; Krishnamurthy, H. Mixed-ligand copper(II)-phenolate complexes: effect of coligand on enhanced DNA and protein binding, DNA cleavage, and anticancer activity. Inorg. Chem. 2007, 46(20), 8208–8221; https://doi.org/10.1021/ic700755p.Search in Google Scholar PubMed

Reddy, P. R.; Radhika, M.; Manjula, P. Synthesis and characterization of mixed ligand complexes of Zn(II) and Co(II) with amino acids: relevance to zinc binding sites in zinc fingers. J. Chem. Sci. 2005, 117(Issue 3), 239–246; https://doi.org/10.1007/bf02709293.Search in Google Scholar

Reiss, A.; Florea, S.; Cǎproiu, T.; Stǎnicǎ, N. Synthesis, characterization, and antibacterial activity of some transition metals with the Schiff base N-(2-furanylmethylene)-3-aminodibenzofuran. Turk. J. Chem. 2009, 33(6), 775–783; https://doi.org/10.3906/kim-0807-31.Search in Google Scholar

Rosu, T.; Negoiu, M.; Dobrogeanu, C.; Ruse, T. Complex combinations of transitional metals with mixed ligands. An. Univ. Bucur. Chim. 2003, I(Ii), 109–116.Search in Google Scholar

Sahu, R.; Thakur, D. S.; Kashyap, P. Schiff base: an overview of its medicinal chemistry potential for new drug molecules. Int. J. Pharmaceut. Sci. Nanotechnol. 2012, 5(3), 1757–1764.10.37285/ijpsn.2012.5.3.2Search in Google Scholar

Santos, A. F.; Brotto, D. F.; Favarin, L. R. V.; Cabeza, N. A.; Andrade, G. R.; Batistote, M.; Cavalheiro, A. A.; Neves, A.; Rodrigues, D. C. M.; dos Anjos, A. Study of the antimicrobial activity of metal complexes and their ligands through bioassays applied to plant extracts. Rev. Bras. Farmacogn. 2014, 24(3), 309–315; https://doi.org/10.1016/j.bjp.2014.07.008.Search in Google Scholar

Sapna, K.; Kumar Sharma, N.; Kohli, S. Preparation and characterization of Ni(II) and Mn(II) complexes of semicarbazone and thiosemicarbazone of m- hydroxy benzaldehyde and p- hydroxy benzaldehyde. Int. J. Sci. Eng. Res. 2013, 4(9), 15–21.Search in Google Scholar

Selvaganapathy, M.; Raman, N. Pharmacological activity of a few transition metal complexes: a short review. J. Chem. Biol. Therapeut. 2016, 01(02), 1–17; https://doi.org/10.4172/2572-0406.1000108.Search in Google Scholar

Seng, H. L.; Wang, W. S.; Kong, S. M.; Alan Ong, H. K.; Win, Y. F.; Raja Noor Zaliha, R. N. Z. R.; Chikira, M.; Leong, W. K.; Ahmad, M.; Khoo, A. S. B.; Ng, C. H. Biological and cytoselective anticancer properties of copper(II)- polypyridyl complexes modulated by auxiliary methylated glycine ligand. BioMetals 2012, 25(5), 1061–1081; https://doi.org/10.1007/s10534-012-9572-4.Search in Google Scholar PubMed

Shaabani, B.; Darbari, R. Synthesis and characterization of salen and thiocyanate complexes with Co2+, Fe3+, Cu2+, and Mn2+ transition metal cations. Elixir Org. Chem. 2013, 55, 12764–12766.Search in Google Scholar

Souaya, E. R.; Khalil, M. M. H.; Ismail, E. H.; Bendas, E. R.; Neaz, O. S. Synthesis and characterization of ternary complexes of certain hydroxyl acids and their biological applications. Res. J. Pharmaceut. Biol. Chem. Sci. 2014, 5(4), 18–30.Search in Google Scholar

Spînu, C.; Pleniceanu, M.; Tigae, C. Biologically active transition metal chelates with a 2- thiophenecarboxaldehyde-derived Schiff base: synthesis, characterization, and antibacterial properties. Turk. J. Chem. 2008, 32(4), 487–493.Search in Google Scholar

Sreekanth, B.; Gopinath, S. M.; Veena Pillai, V.; Ismail Shareef, M.; Reddy, J. M.; Vishnuvardhan, T. K.; Murali Krishna, P.; Sridhara, V. DNA binding and antimicrobial studies on Co (III) and Fe (II) metal complexes containing mixed ligands. Res. J. Pharmaceut. Biol. Chem. Sci. 2013, 4(4), 217–225.Search in Google Scholar

Suja, N. Studies on Some Supported Cobalt(II), Nickel(II) and Copper(II) Complexes of o-Phenylenediamine and Schiff Bases Derived from 3-Hydroxyquinoxaline-2-Carboxaldehyde (Issue April); Department of Applied Chemistry, Cochin University of Science and Technology: Kochi, India, 2002.Search in Google Scholar

Sultan, J. S. Synthesis, characterization of new Schiff base and some metal complexes derived from glyoxylic acid and O-phenylenediamine. Ibn Al-Haitham J. Pure Appl. Sci. 2012, 25(3), 264–275.Search in Google Scholar

Sun, N.-B.; Wu, H.-K.; Tong, J.-Y. Grinding synthesis of Schiff bases combined with infrared irradiation. Asian J. Chem. 2013, 10, 5399–5401.10.14233/ajchem.2013.14382Search in Google Scholar

Sureshan, C. A.; Bhattacharya, P. K. Synthesis, characterization and electrochemical properties of Fe(III) binuclear complexes. Indian J. Chem. Inorg. Phys. Theor. Anal. Chem. 2002, 41(5), 973–975.Search in Google Scholar

Syed Tajudeen, S.; Kannappan, G. Schiff base–copper(II) complexes: synthesis, spectral studies and anti-tubercular and antimicrobial activity. Indian J. Adv. Chem. Sci. 2016, 4(1), 40–48.Search in Google Scholar

Tanaka, K.; Shiraishi, R. Clean and efficient condensation reactions of aldehydes and amines in a water suspension medium. Green Chem. 2000, 2(6), 272–273; https://doi.org/10.1039/b006424f.Search in Google Scholar

Turky Shamkhy, E. Preparation and characterization of new Schiff base derived from pyridine and its metal complexes. Int. J. Curr. Res. Chem. Pharm. Sci. 2016, 3(4), 118–123.Search in Google Scholar

Uddin, M. N. Metal complexes of Schiff bases derived from 2-thiophenecarboxaldehyde and mono/diamine as the antibacterial agents. Mod. Chem. 2014, 2(2), 6; https://doi.org/10.11648/j.mc.20140202.11.Search in Google Scholar

Vázquez, M. Á.; Landa, M.; Reyes, L.; Miranda, R.; Tamariz, J.; Delgado, F. Infrared irradiation: effective promoter in the formation of N-benzylideneanilines in the absence of solvent. Synth. Commun. 2004, 34(15), 2705–2718; https://doi.org/10.1081/SCC-200026190.Search in Google Scholar

Wankhede, D.; Chavan, S. Synthesis, characterization and antimicrobial activities of mixed ligand complexes of transition metals using 2-aminophenol and 2-chloroaniline as ligands. Asian J. Res. Chem. 2017, 10(5), 639–645; https://doi.org/10.5958/0974-4150.2017.00108.0.Search in Google Scholar

Zheng, Y.; Ma, K.; Li, H.; Li, J.; He, J.; Sun, X.; Li, R.; Ma, J. One pot synthesis of imines from aromatic nitro compounds with a novel Ni/SiO2 magnetic catalyst. Catal. Lett. 2009, 128(3–4), 465–474; https://doi.org/10.1007/s10562-008-9774-0.Search in Google Scholar

Received: 2021-07-31
Accepted: 2021-12-21
Published Online: 2022-01-21
Published in Print: 2022-12-16

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.6.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2021-0027/html
Scroll to top button