Severe Acute Respiratory Syndrome Coronavirus 2 Variant Infection Dynamics and Pathogenesis in Transgenic K18-hACE2 and Inbred Immunocompetent C57BL/6J Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics and Biosafety
2.2. Mice
2.3. Cell Lines and SARS-CoV-2 Isolates
2.4. SARS-CoV-2 Mouse Inoculation and Monitoring
2.5. SARS-CoV-2 Plaque Assays
2.6. Histopathological Analyses
2.7. Immunofluorescence
2.8. Statistical Analyses
3. Results
3.1. SARS-CoV-2 Variants Infect Oropharynx, Lungs, and Brains of K18 Mice
3.2. Severity of Histopathologic Changes in the Lung and Brain of SARS-CoV-2-Infected K18 Mice Is Variant-Dependent
3.3. SARS-CoV-2 Variants Infect Oropharynx, Trachea, and Lungs of C57BL/6J Mice but Do Not Exhibit Neurotropism
3.4. SARS-CoV2 Infection in C57BL/6J Mice Produces Mild Histopathologic Lesions in the Lung
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- COVID-19 Cases|WHO COVID-19 Dashboard. Available online: https://data.who.int/dashboards/covid19/cases (accessed on 22 October 2024).
- Walensky, R.P.; Walke, H.T.; Fauci, A.S. SARS-CoV-2 Variants of Concern in the United States-Challenges and Opportunities. JAMA 2021, 325, 1037–1038. [Google Scholar] [CrossRef] [PubMed]
- Lamers, M.M.; Haagmans, B.L. SARS-CoV-2 Pathogenesis. Nat. Rev. Microbiol. 2022, 20, 270–284. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Post COVID-19 Condition (Long COVID); World Health Organization: Geneva, Switzerland, 2025. [Google Scholar]
- Tarrés-Freixas, F.; Trinité, B.; Pons-Grífols, A.; Romero-Durana, M.; Riveira-Muñoz, E.; Ávila-Nieto, C.; Pérez, M.; Garcia-Vidal, E.; Perez-Zsolt, D.; Muñoz-Basagoiti, J.; et al. Heterogeneous Infectivity and Pathogenesis of SARS-CoV-2 Variants Beta, Delta and Omicron in Transgenic K18-hACE2 and Wildtype Mice. Front. Microbiol. 2022, 13, 840757. [Google Scholar] [CrossRef]
- Manirambona, E.; Okesanya, O.J.; Olaleke, N.O.; Oso, T.A.; Lucero-Prisno, D.E. Evolution and Implications of SARS-CoV-2 Variants in the Post-Pandemic Era. Discov. Public Health 2024, 21, 16. [Google Scholar] [CrossRef]
- Mendiola-Pastrana, I.R.; López-Ortiz, E.; Río de la Loza-Zamora, J.G.; González, J.; Gómez-García, A.; López-Ortiz, G. SARS-CoV-2 Variants and Clinical Outcomes: A Systematic Review. Life 2022, 12, 170. [Google Scholar] [CrossRef]
- Hirabara, S.M.; Serdan, T.D.A.; Gorjao, R.; Masi, L.N.; Pithon-Curi, T.C.; Covas, D.T.; Curi, R.; Durigon, E.L. SARS-CoV-2 Variants: Differences and Potential of Immune Evasion. Front. Cell. Infect. Microbiol. 2022, 11, 781429. [Google Scholar] [CrossRef]
- Singh, H.; Dahiya, N.; Yadav, M.; Sehrawat, N. Emergence of SARS-CoV-2 New Variants and Their Clinical Significance. Can. J. Infect. Dis. Med. Microbiol. 2022, 2022, 7336309. [Google Scholar] [CrossRef]
- Knight, A.C.; Montgomery, S.A.; Fletcher, C.A.; Baxter, V.K. Mouse Models for the Study of SARS-CoV-2 Infection. Comp. Med. 2021, 71, 383–397. [Google Scholar] [CrossRef]
- Park, J.-G.; Pino, P.A.; Akhter, A.; Alvarez, X.; Torrelles, J.B.; Martinez-Sobrido, L. Animal Models of COVID-19: Transgenic Mouse Model. Methods Mol. Biol. 2022, 2452, 259. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kim, J.; Jang, J.Y.; Noh, H.; Park, J.; Jeong, H.; Jeon, D.; Uhm, C.; Oh, H.; Cho, K.; et al. Mouse Models of Lung-Specific SARS-CoV-2 Infection with Moderate Pathological Traits. Front. Immunol. 2022, 13, 1055811. [Google Scholar]
- Dedoni, S.; Avdoshina, V.; Camoglio, C.; Siddi, C.; Fratta, W.; Scherma, M.; Fadda, P. K18- and CAG-hACE2 Transgenic Mouse Models and SARS-CoV-2: Implications for Neurodegeneration Research. Molecules 2022, 27, 4142. [Google Scholar] [CrossRef] [PubMed]
- SARS-CoV-2 Immunity in Animal Models | Cellular & Molecular Immunology. Available online: https://www.nature.com/articles/s41423-023-01122-w (accessed on 20 July 2024).
- McCray, P.B.; Pewe, L.; Wohlford-Lenane, C.; Hickey, M.; Manzel, L.; Shi, L.; Netland, J.; Jia, H.P.; Halabi, C.; Sigmund, C.D.; et al. Lethal Infection of K18-hACE2 Mice Infected with Severe Acute Respiratory Syndrome Coronavirus. J. Virol. 2007, 81, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Yinda, C.K.; Port, J.R.; Bushmaker, T.; Owusu, I.O.; Purushotham, J.N.; Avanzato, V.A.; Fischer, R.J.; Schulz, J.E.; Holbrook, M.G.; Hebner, M.J.; et al. K18-hACE2 Mice Develop Respiratory Disease Resembling Severe COVID-19. PLoS Pathog. 2021, 17, e1009195. [Google Scholar] [CrossRef]
- A Longitudinal Molecular and Cellular Lung Atlas of Lethal SARS-CoV-2 Infection in K18-hACE2 Transgenic Mice—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/38118400/ (accessed on 25 October 2024).
- Aw, Z.Q.; Mok, C.K.; Wong, Y.H.; Chen, H.; Mak, T.M.; Lin, R.T.P.; Lye, D.C.; Tan, K.S.; Chu, J.J.H. Early Pathogenesis Profiles across SARS-CoV-2 Variants in K18-hACE2 Mice Revealed Differential Triggers of Lung Damages. Front. Immunol. 2022, 13, 950666. [Google Scholar] [CrossRef]
- Radvak, P.; Kwon, H.-J.; Kosikova, M.; Ortega-Rodriguez, U.; Xiang, R.; Phue, J.-N.; Shen, R.-F.; Rozzelle, J.; Kapoor, N.; Rabara, T.; et al. SARS-CoV-2 B.1.1.7 (Alpha) and B.1.351 (Beta) Variants Induce Pathogenic Patterns in K18-hACE2 Transgenic Mice Distinct from Early Strains. Nat. Commun. 2021, 12, 6559. [Google Scholar] [CrossRef]
- He, Y.; Henley, J.; Sell, P.; Comai, L. Differential Outcomes of Infection by Wild-Type SARS-CoV-2 and the B.1.617.2 and B.1.1.529 Variants of Concern in K18-hACE2 Transgenic Mice. Viruses 2023, 16, 60. [Google Scholar] [CrossRef]
- Kuruppuarachchi, K.A.P.P.; Jang, Y.; Seo, S.H. Comparison of the Pathogenicity of SARS-CoV-2 Delta and Omicron Variants by Analyzing the Expression Patterns of Immune Response Genes in K18-hACE2 Transgenic Mice. Front. Biosci. (Landmark Ed.) 2022, 27, 316. [Google Scholar] [CrossRef]
- Weiss, C.M.; Liu, H.; Ball, E.E.; Hoover, A.R.; Wong, T.S.; Wong, C.F.; Lam, S.; Hode, T.; Keel, M.K.; Levenson, R.M.; et al. N-Dihydrogalactochitosan Reduces Mortality in a Lethal Mouse Model of SARS-CoV-2. PLoS ONE 2023, 18, e0289139. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, M.; Wu, B.; Zhang, C.; Wang, Y.; Han, X.; Wang, R.; Li, L.; Wei, Y.; Sun, Y.; et al. A Highly Susceptible hACE2-Transgenic Mouse Model for SARS-CoV-2 Research. Front. Microbiol. 2024, 15, 1348405. [Google Scholar] [CrossRef]
- Saravanan, U.B.; Namachivayam, M.; Jeewon, R.; Huang, J.-D.; Durairajan, S.S.K. Animal Models for SARS-CoV-2 and SARS-CoV-1 Pathogenesis, Transmission and Therapeutic Evaluation. World J. Virol. 2022, 11, 40–56. [Google Scholar] [CrossRef]
- Winkler, E.S.; Bailey, A.L.; Kafai, N.M.; Nair, S.; McCune, B.T.; Yu, J.; Fox, J.M.; Chen, R.E.; Earnest, J.T.; Keeler, S.P.; et al. SARS-CoV-2 Infection of hACE2 Transgenic Mice Causes Severe Lung Inflammation and Impaired Function. Nat. Immunol. 2020, 21, 1327. [Google Scholar] [CrossRef] [PubMed]
- Hingorani, K.S.; Bhadola, S.; Cervantes-Arslanian, A.M. COVID-19 and the Brain. Trends Cardiovasc. Med. 2022, 32, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.; Voss, K.; Turnbull, J.B.; Gustin, A.T.; Knoll, M.; Muruato, A.; Hsiang, T.-Y.; Dinnon, K.H.; Leist, S.R.; Nickel, K.; et al. A C57BL/6 Mouse Model of SARS-CoV-2 Infection Recapitulates Age- and Sex-Based Differences in Human COVID-19 Disease and Recovery. Res. Sq. 2022, 11, 47. [Google Scholar] [CrossRef] [PubMed]
- Leist, S.R.; Dinnon, K.H.; Schäfer, A.; Tse, L.V.; Okuda, K.; Hou, Y.J.; West, A.; Edwards, C.E.; Sanders, W.; Fritch, E.J.; et al. A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and Mortality in Standard Laboratory Mice. Cell 2020, 183, 1070–1085.e12. [Google Scholar] [CrossRef]
- Thieulent, C.J.; Dittmar, W.; Balasuriya, U.B.R.; Crossland, N.A.; Wen, X.; Richt, J.A.; Carossino, M. Mouse-Adapted SARS-CoV-2 MA10 Strain Displays Differential Pulmonary Tropism and Accelerated Viral Replication, Neurodissemination, and Pulmonary Host Responses in K18-hACE2 Mice. mSphere 2023, 8, e00558. [Google Scholar] [CrossRef]
- Kant, R.; Kareinen, L.; Smura, T.; Freitag, T.L.; Jha, S.K.; Alitalo, K.; Meri, S.; Sironen, T.; Saksela, K.; Strandin, T.; et al. Common Laboratory Mice Are Susceptible to Infection with the SARS-CoV-2 Beta Variant. Viruses 2021, 13, 2263. [Google Scholar] [CrossRef]
- Metzdorf, K.; Jacobsen, H.; Greweling-Pils, M.C.; Hoffmann, M.; Lüddecke, T.; Miller, F.; Melcher, L.; Kempf, A.M.; Nehlmeier, I.; Bruder, D.; et al. TMPRSS2 Is Essential for SARS-CoV-2 Beta and Omicron Infection. Viruses 2023, 15, 271. [Google Scholar] [CrossRef]
- Shuai, H.; Chan, J.F.-W.; Hu, B.; Chai, Y.; Yoon, C.; Liu, H.; Liu, Y.; Shi, J.; Zhu, T.; Hu, J.-C.; et al. The Viral Fitness and Intrinsic Pathogenicity of Dominant SARS-CoV-2 Omicron Sublineages BA.1, BA.2, and BA.5. eBioMedicine 2023, 95, 104753. [Google Scholar] [CrossRef]
- Yasui, F.; Matsumoto, Y.; Yamamoto, N.; Sanada, T.; Honda, T.; Munakata, T.; Itoh, Y.; Kohara, M. Infection with the SARS-CoV-2 B.1.351 Variant Is Lethal in Aged BALB/c Mice. Sci. Rep. 2022, 12, 4150. [Google Scholar] [CrossRef]
- Xue, S.; Han, Y.; Wu, F.; Wang, Q. Mutations in the SARS-CoV-2 Spike Receptor Binding Domain and Their Delicate Balance between ACE2 Affinity and Antibody Evasion. Protein Cell 2024, 15, 403–418. [Google Scholar] [CrossRef]
- Tucker, R.P.; Ishimaru, T.; Gong, Q. Immunohistochemistry and In Situ Hybridization in the Developing Chicken Brain. Methods Mol. Biol. 2020, 2047, 421–437. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, J.; Lampe, J.; Müller-Fielitz, H.; Schuster, R.; Zille, M.; Müller, K.; Krohn, M.; Körbelin, J.; Zhang, L.; Özorhan, Ü.; et al. The SARS-CoV-2 Main Protease Mpro Causes Microvascular Brain Pathology by Cleaving NEMO in Brain Endothelial Cells. Nat. Neurosci. 2021, 24, 1522–1533. [Google Scholar] [CrossRef] [PubMed]
- Villadiego, J.; García-Arriaza, J.; Ramírez-Lorca, R.; García-Swinburn, R.; Cabello-Rivera, D.; Rosales-Nieves, A.E.; Álvarez-Vergara, M.I.; Cala-Fernández, F.; García-Roldán, E.; López-Ogáyar, J.L.; et al. Full Protection from SARS-CoV-2 Brain Infection and Damage in Susceptible Transgenic Mice Conferred by MVA-CoV2-S Vaccine Candidate. Nat. Neurosci. 2023, 26, 226–238. [Google Scholar] [CrossRef]
- Carossino, M.; Kenney, D.; O’Connell, A.K.; Montanaro, P.; Tseng, A.E.; Gertje, H.P.; Grosz, K.A.; Ericsson, M.; Huber, B.R.; Kurnick, S.A.; et al. Fatal Neurodissemination and SARS-CoV-2 Tropism in K18-hACE2 Mice Is Only Partially Dependent on hACE2 Expression. Viruses 2022, 14, 535. [Google Scholar] [CrossRef]
- Liu, H.; Brostoff, T.; Ramirez, A.; Wong, T.; Rowland, D.J.; Heffner, M.; Flores, A.; Willis, B.; Evans, J.J.; Lanoue, L.; et al. Establishment and Characterization of an hACE2/hTMPRSS2 Knock-in Mouse Model to Study SARS-CoV-2. Front. Immunol. 2024, 15, 1428711. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, X.-Y.; Liu, Y.; Sun, M.-X.; Ji, B.; Zhou, C.; Chi, H.; Zhang, R.-R.; Luo, D.; Tian, Y.; et al. Comparative Characterization of SARS-CoV-2 Variants of Concern and Mouse-Adapted Strains in Mice. J. Med. Virol. 2022, 94, 3223–3232. [Google Scholar] [CrossRef]
- Liu, X.; Mostafavi, H.; Ng, W.H.; Freitas, J.R.; King, N.J.C.; Zaid, A.; Taylor, A.; Mahalingam, S. The Delta SARS-CoV-2 Variant of Concern Induces Distinct Pathogenic Patterns of Respiratory Disease in K18-hACE2 Transgenic Mice Compared to the Ancestral Strain from Wuhan. mBio 2022, 13, e0068322. [Google Scholar] [CrossRef]
- Seehusen, F.; Clark, J.J.; Sharma, P.; Bentley, E.G.; Kirby, A.; Subramaniam, K.; Wunderlin-Giuliani, S.; Hughes, G.L.; Patterson, E.I.; Michael, B.D.; et al. Neuroinvasion and Neurotropism by SARS-CoV-2 Variants in the K18-hACE2 Mouse. Viruses 2022, 14, 1020. [Google Scholar] [CrossRef]
- Stewart, R.; Yan, K.; Ellis, S.A.; Bishop, C.R.; Dumenil, T.; Tang, B.; Nguyen, W.; Larcher, T.; Parry, R.; Sng, J.D.J.; et al. SARS-CoV-2 Omicron BA.5 and XBB Variants Have Increased Neurotropic Potential over BA.1 in K18-hACE2 Mice and Human Brain Organoids. Front. Microbiol. 2023, 14, 1320856. [Google Scholar] [CrossRef]
- Natekar, J.P.; Pathak, H.; Stone, S.; Kumari, P.; Sharma, S.; Auroni, T.T.; Arora, K.; Rothan, H.A.; Kumar, M. Differential Pathogenesis of SARS-CoV-2 Variants of Concern in Human ACE2-Expressing Mice. Viruses 2022, 14, 1139. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.F.-W.; Hu, B.; Chai, Y.; Shuai, H.; Liu, H.; Shi, J.; Liu, Y.; Yoon, C.; Zhang, J.; Hu, J.-C.; et al. Virological Features and Pathogenicity of SARS-CoV-2 Omicron BA.2. Cell Rep. Med. 2022, 3, 100743. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.-Y.; Lee, H.; Kim, N.; Jeon, P.; Kim, J.-W.; Lim, H.-Y.; Yang, J.-S.; Kim, K.-C.; Lee, J.-Y. Comparison of SARS-CoV-2 Variant Lethality in Human Angiotensin-Converting Enzyme 2 Transgenic Mice. Virus Res. 2021, 305, 198563. [Google Scholar] [CrossRef] [PubMed]
- da Silva Santos, Y.; Gamon, T.H.M.; de Azevedo, M.S.P.; Telezynski, B.L.; de Souza, E.E.; de Oliveira, D.B.L.; Dombrowski, J.G.; Rosa-Fernandes, L.; Palmisano, G.; de Moura Carvalho, L.J.; et al. Virulence Profiles of Wild-Type, P.1 and Delta SARS-CoV-2 Variants in K18-hACE2 Transgenic Mice. Viruses 2023, 15, 999. [Google Scholar] [CrossRef]
- Nyberg, T.; Ferguson, N.M.; Nash, S.G.; Webster, H.H.; Flaxman, S.; Andrews, N.; Hinsley, W.; Bernal, J.L.; Kall, M.; Bhatt, S.; et al. Comparative Analysis of the Risks of Hospitalisation and Death Associated with SARS-CoV-2 Omicron (B.1.1.529) and Delta (B.1.617.2) Variants in England: A Cohort Study. Lancet 2022, 399, 1303–1312. [Google Scholar] [CrossRef]
- Halfmann, P.J.; Iida, S.; Iwatsuki-Horimoto, K.; Maemura, T.; Kiso, M.; Scheaffer, S.M.; Darling, T.L.; Joshi, A.; Loeber, S.; Singh, G.; et al. SARS-CoV-2 Omicron Virus Causes Attenuated Disease in Mice and Hamsters. Nature 2022, 603, 687–692. [Google Scholar] [CrossRef]
- Shuai, H.; Chan, J.F.-W.; Hu, B.; Chai, Y.; Yuen, T.T.-T.; Yin, F.; Huang, X.; Yoon, C.; Hu, J.-C.; Liu, H.; et al. Attenuated Replication and Pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature 2022, 603, 693–699. [Google Scholar] [CrossRef]
- Meng, B.; Abdullahi, A.; Ferreira, I.A.T.M.; Goonawardane, N.; Saito, A.; Kimura, I.; Yamasoba, D.; Gerber, P.P.; Fatihi, S.; Rathore, S.; et al. Altered TMPRSS2 Usage by SARS-CoV-2 Omicron Impacts Infectivity and Fusogenicity. Nature 2022, 603, 706–714. [Google Scholar] [CrossRef]
- Yen, H.-L.; Valkenburg, S.; Sia, S.F.; Choy, K.T.; Peiris, J.S.M.; Wong, K.H.M.; Crossland, N.; Douam, F.; Nicholls, J.M. Cellular Tropism of SARS-CoV-2 in the Respiratory Tract of Syrian Hamsters and B6.Cg-Tg(K18-ACE2)2Prlmn/J Transgenic Mice. Vet. Pathol. 2022, 59, 639–647. [Google Scholar] [CrossRef]
- Munster, V.J.; Feldmann, F.; Williamson, B.N.; van Doremalen, N.; Pérez-Pérez, L.; Schulz, J.; Meade-White, K.; Okumura, A.; Callison, J.; Brumbaugh, B.; et al. Respiratory Disease in Rhesus Macaques Inoculated with SARS-CoV-2. Nature 2020, 585, 268–272. [Google Scholar] [CrossRef]
- van Doremalen, N.; Lambe, T.; Spencer, A.; Belij-Rammerstorfer, S.; Purushotham, J.N.; Port, J.R.; Avanzato, V.A.; Bushmaker, T.; Flaxman, A.; Ulaszewska, M.; et al. ChAdOx1 nCoV-19 Vaccine Prevents SARS-CoV-2 Pneumonia in Rhesus Macaques. Nature 2020, 586, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Bain, C.C.; Lucas, C.D.; Rossi, A.G. Pulmonary Macrophages and SARS-CoV-2 Infection. Int. Rev. Cell Mol. Biol. 2022, 367, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Welch, J.L.; Xiang, J.; Chang, Q.; Houtman, J.C.D.; Stapleton, J.T. T-Cell Expression of Angiotensin-Converting Enzyme 2 and Binding of Severe Acute Respiratory Coronavirus 2. J. Infect. Dis. 2022, 225, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Mead, H.; Tian, L.; Park, J.-G.; Garcia, J.I.; Jaramillo, S.; Barr, T.; Kollath, D.S.; Coyne, V.K.; Stone, N.E.; et al. The K18-Human ACE2 Transgenic Mouse Model Recapitulates Non-Severe and Severe COVID-19 in Response to an Infectious Dose of the SARS-CoV-2 Virus. J. Virol. 2022, 96, e0096421. [Google Scholar] [CrossRef]
- Pelaia, C.; Tinello, C.; Vatrella, A.; De Sarro, G.; Pelaia, G. Lung under Attack by COVID-19-Induced Cytokine Storm: Pathogenic Mechanisms and Therapeutic Implications. Ther. Adv. Respir. Dis. 2020, 14, 1753466620933508. [Google Scholar] [CrossRef]
- Zanza, C.; Romenskaya, T.; Manetti, A.C.; Franceschi, F.; La Russa, R.; Bertozzi, G.; Maiese, A.; Savioli, G.; Volonnino, G.; Longhitano, Y. Cytokine Storm in COVID-19: Immunopathogenesis and Therapy. Medicina 2022, 58, 144. [Google Scholar] [CrossRef]
- Hu, T.; Cho, C.H. Cytokine Release Syndrome in Pathogenesis and Treatment of COVID-19. Curr. Pharm. Des. 2022, 28, 1779. [Google Scholar] [CrossRef]
- Mangalmurti, N.; Hunter, C.A. Cytokine Storms: Understanding COVID-19. Immunity 2020, 53, 19–25. [Google Scholar] [CrossRef]
- Costela-Ruiz, V.J.; Illescas-Montes, R.; Puerta-Puerta, J.M.; Ruiz, C.; Melguizo-Rodríguez, L. SARS-CoV-2 Infection: The Role of Cytokines in COVID-19 Disease. Cytokine Growth Factor. Rev. 2020, 54, 62–75. [Google Scholar] [CrossRef]
Strain | Variant | Lineage | Isolation Location | Source, Batch | Passage | Vero Cell Titer (PFU/mL) |
---|---|---|---|---|---|---|
hu/USA/CA-CZB-59X002/2020. (MT394529) | B.1 | WA1-like | CA, USA | Christopher Miller, UC Davis | p2 | 2.2 × 107 |
hu/USA/CA_CDC_5574/2020 | alpha | B.1.1.7 | CA, USA | BEI Resources, NR-54011, Lot: 70041598 | p1 | 7.7 × 106 |
hCoV-19/USA/MD-HP01542/2021 | beta | B.1.351 | MD, USA | BEI Resources, NR-55282, Lot: 70043066 | p1 | 2 × 107 |
hCoV-19/USA/PHC658/2021 | delta | B.1.617.2 | TN, USA | BEI Resources, NR-55611, Lot: 70045238 | p1 | 1.1 × 107 |
hCoV-19/USA/HI-CDC-4359259-001/2021 | omicron | B.1.1.529 | HI, USA | BEI Resources, NR-56475 Lot: 70049691 | p1 | 2.1 × 107 |
hCoV-19/USA/MD-HP40900/2022 | omicron-XBB.1.5 | B.1.1.529-XBB.1.5 | MD, USA | BEI Resources, NR-59104 Lot: 70057837 | p1 | 7.2 × 107 |
MA10 (mouse adapted USA-WA1/2020 backbone) | B.1 MA-10 | WA1 | N/A | BEI Resources, NR-55329 Lot: 70043185 | p1 | 2.3 × 107 |
Antigen Recognized | Host Species and Format | Source and Catalog Number | RRID | Protocol |
---|---|---|---|---|
CD3 | Rat monoclonal | BioLegend (100202) | AB_312659 | (1:400) with fluor-conjugated 2nd antibody |
CD68 | Rat monoclonal | Invitrogen (14-0681-82) | AB_2572857 | (1:100) with fluor-conjugated 2nd antibody |
Iba1 | Goat polyclonal | Novus Biologicals (NB100-1028) | AB_521594 | (1:200) with B DαGt with fluor-SA |
Ly6g | Rat monoclonal | Invitrogen (16-9668-82) | AB_2573128 | (1:200) with fluor-conjugated 2nd antibody |
SARS-CoV-2 nucleocapsid protein (NP) | Rabbit monoclonal | Sino Biological (40143-R019) | AB_2827973 | (1:5000) with fluor-conjugated 2nd antibody |
NeuN | Mouse monoclonal | Protein Tech (66836-1-Ig) | AB_2882179 | (1:500) with B DαM with fluor-SA |
GFAP (Ga5) | Mouse monoclonal | Cell Signaling Technology (3670) | AB_561049 | (1:500) with fluor-conjugated 2nd antibody |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Ramirez, B.M.; Wong, T.S.; Weiss, C.M.; Lloyd, K.C.K.; Gong, Q.; Coffey, L.L. Severe Acute Respiratory Syndrome Coronavirus 2 Variant Infection Dynamics and Pathogenesis in Transgenic K18-hACE2 and Inbred Immunocompetent C57BL/6J Mice. Viruses 2025, 17, 500. https://doi.org/10.3390/v17040500
Liu H, Ramirez BM, Wong TS, Weiss CM, Lloyd KCK, Gong Q, Coffey LL. Severe Acute Respiratory Syndrome Coronavirus 2 Variant Infection Dynamics and Pathogenesis in Transgenic K18-hACE2 and Inbred Immunocompetent C57BL/6J Mice. Viruses. 2025; 17(4):500. https://doi.org/10.3390/v17040500
Chicago/Turabian StyleLiu, Hongwei, Brianna M. Ramirez, Talia S. Wong, Christopher M. Weiss, Kevin C. K. Lloyd, Qizhi Gong, and Lark L. Coffey. 2025. "Severe Acute Respiratory Syndrome Coronavirus 2 Variant Infection Dynamics and Pathogenesis in Transgenic K18-hACE2 and Inbred Immunocompetent C57BL/6J Mice" Viruses 17, no. 4: 500. https://doi.org/10.3390/v17040500
APA StyleLiu, H., Ramirez, B. M., Wong, T. S., Weiss, C. M., Lloyd, K. C. K., Gong, Q., & Coffey, L. L. (2025). Severe Acute Respiratory Syndrome Coronavirus 2 Variant Infection Dynamics and Pathogenesis in Transgenic K18-hACE2 and Inbred Immunocompetent C57BL/6J Mice. Viruses, 17(4), 500. https://doi.org/10.3390/v17040500