Abstract
The high concentrations of air pollutants in Peru remain a persistent problem, significantly impacting public health. Understanding the extent to which the COVID-19 lockdown affected these contaminants is crucial. To determine variations in NO2, O3, CO, and SO2 concentrations in 10 Peruvian cities before, during, and after lockdown. A comparative ecological study was conducted in urban areas of 10 major Peruvian cities using the Google Earth Engine (GEE) platform. Data on atmospheric pollutant concentrations were extracted from the Sentinel-5P/TROPOMI satellite images for the period between March 16 and June 30, across the years 2019, 2020, 2021, and 2022, for comparative analysis. The Wilcoxon test was used to evaluate changes between the study periods. We included 10 urban cities located across three geographic regions of Peru. Most urban cities experienced a decrease in NO2 concentrations and an increase in O3 and CO levels during the lockdown, while SO2 concentrations remained relatively constant. The lockdown has caused variations in NO2, O3 and CO concentrations. Future studies with accurate data on air pollutant concentrations are needed to ensure targeted and effective interventions.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data availability
Data Availability Statement: Data on air pollutant concentrations utilized in this study were de-rived from Sentinel-5P/TROPOMI (TROPOspheric Monitoring Instrument) and MapBiomas Peru project (accessible through the GEE Id asset: ‘pro-jects/mapbiomas-public/assets/peru/collection1/mapbiomas_peru_collection1_integration_v1’).
References
Anenberg, S. C., Henze, D. K., Tinney, V., Kinney, P. L., Raich, W., Fann, N., Malley, C. S., Roman, H., Lamsal, L., Duncan, B., Martin, R. V., Van Donkelaar, A., Brauer, M., Doherty, R., Jonson, J. E., Davila, Y., Sudo, K., & Kuylenstierna, J. C. I. (2018). Estimates of the global burden of ambient PM2.5, Ozone, and NO2 on asthma incidence and emergency room Visits. Environmental Health Perspectives,126(10), 107004. https://doi.org/10.1289/EHP3766
Barua, S., & Nath, S. D. (2021). The impact of COVID-19 on air pollution: Evidence from global data. Journal of Cleaner Production,298, 126755. https://doi.org/10.1016/j.jclepro.2021.126755
Beirle, S., Platt, U., Wenig, M., & Wagner, T. (2003). Weekly cycle of NO2 by GOME measurements: A signature of anthropogenic sources. Atmospheric Chemistry and Physics,3(6), 2225–2232. https://doi.org/10.5194/acp-3-2225-2003
Berman, J. D., & Ebisu, K. (2020). Changes in U.S. air pollution during the COVID-19 pandemic. Science of The Total Environment,739, 139864. https://doi.org/10.1016/j.scitotenv.2020.139864
Blanco Villafuerte, L., Hartinger, S., Steenland, K., Naeher, L. P., & Checkley, W. (2024). Evaluating the Performance of Low-Cost Air Quality Monitors in Lima, Peru. ISEE Conference Abstracts, 2024(1), isee.2024.0080. https://doi.org/10.1289/isee.2024.0080
Brook, J. R., Burnett, R. T., Dann, T. F., Cakmak, S., Goldberg, M. S., Fan, X., & Wheeler, A. J. (2007). Further interpretation of the acute effect of nitrogen dioxide observed in Canadian time-series studies. Journal of Exposure Science & Environmental Epidemiology,17(S2), S36–S44. https://doi.org/10.1038/sj.jes.7500626
Butchart, N. (2014). The Brewer-Dobson circulation. Reviews of Geophysics,52(2), 157–184. https://doi.org/10.1002/2013RG000448
Cazorla, M., & Herrera, E. (2022). An ozonesonde evaluation of spaceborne observations in the Andean tropics. Scientific Reports,12(1), 15942. https://doi.org/10.1038/s41598-022-20303-7
Collivignarelli, M. C., Abbà, A., Bertanza, G., Pedrazzani, R., Ricciardi, P., & Carnevale Miino, M. (2020). Lockdown for CoViD-2019 in Milan: What are the effects on air quality? Science of the Total Environment,732, 139280. https://doi.org/10.1016/j.scitotenv.2020.139280
Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., Van Aardenne, J. A., Monni, S., Doering, U., Olivier, J. G. J., Pagliari, V., & Janssens-Maenhout, G. (2018). Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2. Earth System Science Data,10(4), 1987–2013. https://doi.org/10.5194/essd-10-1987-2018
Elshorbany, Y. F., Kapper, H. C., Ziemke, J. R., & Parr, S. A. (2021). The status of air quality in the United States during the COVID-19 Pandemic: A remote sensing perspective. Remote Sensing,13(3), 3. https://doi.org/10.3390/rs13030369
European Space Agency. (2020). TROPOMI Level 2 Sulphur Dioxide. https://doi.org/10.5270/S5P-74eidii
Faisal, M., & Jaelani, L. M. (2023). Spatio-temporal analysis of nitrogen dioxide (NO2) from Sentinel-5P imageries using Google Earth engine changes during the COVID-19 social restriction policy in jakarta. Natural Hazards Research,3(2), 344–352. https://doi.org/10.1016/j.nhres.2023.02.006
Fei, S., Wagan, R. A., Hasnain, A., Hussain, A., Bhatti, U. A., & Elahi, E. (2022). Spatiotemporal impact of the COVID-19 pandemic lockdown on air quality pattern in Nanjing, China. Frontiers in Environmental Science, 10, 952310. https://doi.org/10.3389/fenvs.2022.952310
Ghasempour, F., Sekertekin, A., & Kutoglu, S. H. (2021). Google earth engine based spatio-temporal analysis of air pollutants before and during the first wave COVID-19 outbreak over Turkey via remote sensing. Journal of Cleaner Production,319, 128599. https://doi.org/10.1016/j.jclepro.2021.128599
Google for Developers. (2023). Sentinel-5P OFFL NO2: Offline Nitrogen Dioxide. Google for Developers. https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_NO2. Accessed 24 Oct 2023.
Hamra, G. B., Laden, F., Cohen, A. J., Raaschou-Nielsen, O., Brauer, M., & Loomis, D. (2015). Lung cancer and exposure to nitrogen dioxide and traffic: A Systematic review and meta-Analysis. Environmental Health Perspectives,123(11), 1107–1112. https://doi.org/10.1289/ehp.1408882
Hernández-Vásquez, A., & Díaz-Seijas, D. (2017). Contaminación ambiental y repositorios de datos históricos de contaminantes atmosféricos en Perú. Salud Pública de México,59(5, sep-oct), 507. https://doi.org/10.21149/8476
Holloway, T., Miller, D., Anenberg, S., Diao, M., Duncan, B., Fiore, A. M., Henze, D. K., Hess, J., Kinney, P. L., Liu, Y., Neu, J. L., O’Neill, S. M., Odman, M. T., Pierce, R. B., Russell, A. G., Tong, D., West, J. J., & Zondlo, M. A. (2021). Satellite monitoring for air quality and health. Annual Review of Biomedical Data Science,4(1), 417–447. https://doi.org/10.1146/annurev-biodatasci-110920-093120
Hosseinzadeh, P., Zareipour, M., Baljani, E., & Moradali, M. R. (2022). Social Consequences of the COVID-19 Pandemic. A systematic review. Investigación y Educación En Enfermería, 40(1). https://doi.org/10.17533/udea.iee.v40n1e10
Husaini, D. C., Reneau, K., & Balam, D. (2022). Air pollution and public health in Latin America and the Caribbean (LAC): A systematic review with meta-analysis. Beni-Suef University Journal of Basic and Applied Sciences,11(1), 122. https://doi.org/10.1186/s43088-022-00305-0
Instituto del Bien Común (IBC). (2019). Proyecto MapBiomas Perú. https://peru.mapbiomas.org/ . Accessed 24 Oct 2023.
Instituto Nacional de Estadística e Informática. (2021a). Perú: Anuario de Estadísticas Ambientales 2021. https://cdn.www.gob.pe/uploads/document/file/3426737/Per%C3%BA%3A%20Anuario%20de%20Estad%C3%ADsticas%20Ambientales%2C%202021.pdf?v=1658177753 . Accessed 24 Oct 2023.
Instituto Nacional de Estadística e Informática. (2021b). Perú: Estado de la población en el año del Bicentenario, 2021. https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1803/libro.pdf. Accessed 24 Oct 2023.
Liu, T., Sun, J., Liu, B., Li, M., Deng, Y., Jing, W., & Yang, J. (2022). Factors Influencing O3 Concentration in traffic and urban environments: A case study of Guangzhou City. International Journal of Environmental Research and Public Health,19(19), 12961. https://doi.org/10.3390/ijerph191912961
Liu, Z., Deng, Z., Davis, S., & Ciais, P. (2023). Monitoring global carbon emissions in 2022. Nature Reviews Earth & Environment,4(4), 205–206. https://doi.org/10.1038/s43017-023-00406-z
Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and health impacts of air pollution: A review. Frontiers in Public Health,8, 14. https://doi.org/10.3389/fpubh.2020.00014
Mendez-Espinosa, J. F., Rojas, N. Y., Vargas, J., Pachón, J. E., Belalcazar, L. C., & Ramírez, O. (2020). Air quality variations in Northern South America during the COVID-19 lockdown. Science of the Total Environment,749, 141621. https://doi.org/10.1016/j.scitotenv.2020.141621
Ministerio del Ambiente. (2015). Estudio de desempeño ambiental 2003–2013. https://www.minam.gob.pe/esda/wp-content/uploads/2016/09/estudio_de-desempeno_ambiental_esda_2016.pdf. Accessed 24 Oct 2023.
Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S., Tarasova, O., Thouret, V., Von Schneidemesser, E., Sommariva, R., Wild, O., & Williams, M. L. (2015). Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmospheric Chemistry and Physics,15(15), 8889–8973. https://doi.org/10.5194/acp-15-8889-2015
Nakada, L. Y. K., & Urban, R. C. (2020). COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Science of the Total Environment,730, 139087. https://doi.org/10.1016/j.scitotenv.2020.139087
Olusola, J. A., Shote, A. A., Isaifan, R. J., & Ouigmane, A. (2021). The impact of COVID-19 pandemic on nitrogen dioxide levels in Nigeria. PeerJ,9, e11387. https://doi.org/10.7717/peerj.11387
Pacheco, H., Díaz-López, S., Jarre, E., Pacheco, H., Méndez, W., & Zamora-Ledezma, E. (2020). NO2 levels after the COVID-19 lockdown in Ecuador: A trade-off between environment and human health. Urban Climate,34, 100674. https://doi.org/10.1016/j.uclim.2020.100674
Panneer, S., Kantamaneni, K., Palaniswamy, U., Bhat, L., Pushparaj, R. R. B., Nayar, K. R., Soundari Manuel, H., Flower, F. X. L. L., & Rice, L. (2022). Health, economic and social development challenges of the COVID-19 Pandemic: Strategies for multiple and interconnected issues. Healthcare,10(5), 770. https://doi.org/10.3390/healthcare10050770
Pannullo, F., Lee, D., Neal, L., Dalvi, M., Agnew, P., O’Connor, F. M., Mukhopadhyay, S., Sahu, S., & Sarran, C. (2017). Quantifying the impact of current and future concentrations of air pollutants on respiratory disease risk in England. Environmental Health,16(1), 29. https://doi.org/10.1186/s12940-017-0237-1
Phillips, T., Zhang, Y., & Petherick, A. (2021). A year of living distantly: Global trends in the use of stay-at-home orders over the first 12 months of the COVID-19 pandemic. Interface Focus,11(6), 20210041. https://doi.org/10.1098/rsfs.2021.0041
Presidencia del Consejo de Ministros. (2020). Decreto Supremo N.° 044–2020-PCM. Decreto Supremo que declara Estado de Emergencia Nacional por las graves circunstancias que afectan la vida de la Nación a consecuencia del brote del COVID-19. https://www.google.com/search?q=Decreto+Supremo+N.%C2%B0+044-2020-PCM&rlz=1C1GCEU_esPE1051PE1052&oq=Decreto+Supremo+N.%C2%B0+044-2020-PCM&aqs=chrome..69i57j0i22i30.727j0j7&sourceid=chrome&ie=UTF-8 . Accessed 24 Oct 2023.
Restrepo, C. E. (2021). Nitrogen Dioxide, Greenhouse gas emissions and transportation in Urban Areas: Lessons from the Covid-19 pandemic. Frontiers in Environmental Science,9, 689985. https://doi.org/10.3389/fenvs.2021.689985
Riojas-Rodríguez, H., da Silva, A. S., Texcalac-Sangrador, J. L., & Moreno-Banda, G. L. (2016). Air pollution management and control in latin america and the caribbean: Implications for climate change. Revista Panamericana De Salud Publica = Pan American Journal of Public Health,40(3), 150–159.
Rojas, J. P., Urdanivia, F. R., Garay, R. A., García, A. J., Enciso, C., Medina, E. A., Toro, R. A., Manzano, C., & Leiva-Guzmán, M. A. (2021). Effects of COVID-19 pandemic control measures on air pollution in Lima metropolitan area, Peru in South America. Air Quality, Atmosphere & Health,14(6), 925–933. https://doi.org/10.1007/s11869-021-00990-3
Rume, T., & Islam, S.M.D.-U. (2020). Environmental effects of COVID-19 pandemic and potential strategies of sustainability. Heliyon,6(9), e04965. https://doi.org/10.1016/j.heliyon.2020.e04965
Sharma, S., Zhang, M., Anshika, G., & J., Zhang, H., & Kota, S. H. (2020). Effect of restricted emissions during COVID-19 on air quality in India. Science of the Total Environment,728, 138878. https://doi.org/10.1016/j.scitotenv.2020.138878
Shrestha, A., Shrestha, U., Sharma, R., Bhattarai, S., Tran, H., & Rupakheti, M. (2020). Lockdown caused by COVID-19 pandemic reduces air pollution in cities worldwide [Preprint]. Life Sciences. https://doi.org/10.31223/OSF.IO/EDT4J
Silva, J., Rojas, J., Norabuena, M., Molina, C., Toro, R. A., & Leiva-Guzmán, M. A. (2017). Particulate matter levels in a South American megacity: The metropolitan area of Lima-Callao, Peru. Environmental Monitoring and Assessment,189(12), 635. https://doi.org/10.1007/s10661-017-6327-2
Stratoulias, D., & Nuthammachot, N. (2020). Air quality development during the COVID-19 pandemic over a medium-sized urban area in Thailand. Science of the Total Environment,746, 141320. https://doi.org/10.1016/j.scitotenv.2020.141320
Theys, N., De Smedt, I., Yu, H., Danckaert, T., Van Gent, J., Hörmann, C., Wagner, T., Hedelt, P., Bauer, H., Romahn, F., Pedergnana, M., Loyola, D., & Van Roozendael, M. (2016). Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 Precursor: Algorithm Theoretical Basis [Preprint]. Gases/remote Sensing/instruments and Platforms. https://doi.org/10.5194/amt-2016-309
Tobías, A., Carnerero, C., Reche, C., Massagué, J., Via, M., Minguillón, M. C., Alastuey, A., & Querol, X. (2020). Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Science of the Total Environment,726, 138540. https://doi.org/10.1016/j.scitotenv.2020.138540
United Nations. (2023). Goal 13. https://sdgs.un.org/goals/goal13 . Accessed 24 Oct 2023.
Veefkind, J. P., Aben, I., McMullan, K., Förster, H., De Vries, J., Otter, G., Claas, J., Eskes, H. J., De Haan, J. F., Kleipool, Q., Van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., … & Levelt, P. F. (2012). TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sensing of Environment, 120, 70–83. https://doi.org/10.1016/j.rse.2011.09.027
Venter, Z. S., Aunan, K., Chowdhury, S., & Lelieveld, J. (2020). COVID-19 lockdowns cause global air pollution declines. Proceedings of the National Academy of Sciences,117(32), 18984–18990. https://doi.org/10.1073/pnas.2006853117
Wang, S., Chu, H., Gong, C., Wang, P., Wu, F., & Zhao, C. (2022). The Effects of COVID-19 lockdown on air pollutant concentrations across China: A Google earth engine-based analysis. International Journal of Environmental Research and Public Health,19(24), 17056. https://doi.org/10.3390/ijerph192417056
World Health Organization. (2020). WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int . Accessed 24 Oct 2023.
World Health Organization. (2022). Billions of people still breathe unhealthy air: New WHO data. https://www.who.int/news/item/04-04-2022-billions-of-people-still-breathe-unhealthy-air-new-who-data . Accessed 24 Oct 2023.
World Health Organization. (2023). Ambient air pollution attributable deaths. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/ambient-air-pollution-attributable-deaths . Accessed 24 Oct 2023.
Zeng, W., Zhao, H., Liu, R., Yan, W., Qiu, Y., Yang, F., Shu, C., & Zhan, Y. (2020). Association between NO2 cumulative exposure and influenza prevalence in mountainous regions: A case study from southwest China. Environmental Research,189, 109926. https://doi.org/10.1016/j.envres.2020.109926
Zhang, Z., Liu, Y., Liu, H., Hao, A., & Zhang, Z. (2022). The impact of lockdown on nitrogen dioxide (NO2) over Central Asian countries during the COVID-19 pandemic. Environmental Science and Pollution Research,29(13), 18923–18931. https://doi.org/10.1007/s11356-021-17140-y
Zhu, Y., Liu, C., Hu, Q., Teng, J., You, D., Zhang, C., Ou, J., Liu, T., Lin, J., Xu, T., & Hong, X. (2022). Impacts of TROPOMI-Derived NOX emissions on NO2 and O3 simulations in the NCP during COVID-19. ACS Environmental Au,2(5), 441–454. https://doi.org/10.1021/acsenvironau.2c00013
Acknowledgements
The authors thank the Universidad Científica del Sur for their support in the publication of this research as well as Donna Pringle for reviewing the language and style.
Funding
Self-financed.
Author information
Authors and Affiliations
Contributions
A.H.V. had the initial research idea. A.H.V. and E.Y.T.C. collected, processed and analyzed the data. A.H.V., R.V.F., J.J.R.H., J.G.O.S., and E.Y.T.C. participated in the design of the study, interpretation of data, writing of the manuscript and approved the final version.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Highlights
This study assesses how the COVID-19 lockdown measures affected air pollution levels in 10 major Peruvian cities, focusing on NO2, O3, CO, and SO2 concentrations.
The study demonstrates that the period of social confinement led to a decrease in NO2 concentrations, indicating a positive outcome in terms of reduced air pollution.
This research contributes to ongoing efforts to address environmental pollution and its impact on public health in Peru.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hernández-Vásquez, A., Vargas-Fernández, R., Rojas Hancco, J.J. et al. Variations in air pollution before, during and after the COVID-19 lockdown in Peruvian cities. Environ Monit Assess 196, 1142 (2024). https://doi.org/10.1007/s10661-024-13282-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10661-024-13282-x