Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

COVID-19 in G6PD-deficient Patients, Oxidative Stress, and Neuropathology

Author(s): Beatriz Hernández-Ochoa, Daniel Ortega-Cuellar, Abigail González-Valdez, Noemí Cárdenas-Rodríguez, Julieta Griselda Mendoza-Torreblanca, Itzel Jatziri Contreras-García, Luz Adriana Pichardo-Macías, Cindy Bandala and Saúl Gómez-Manzo*

Volume 22, Issue 16, 2022

Published on: 04 July, 2022

Page: [1307 - 1325] Pages: 19

DOI: 10.2174/1568026622666220516111122

Price: $65

Abstract

Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme that regulates energy metabolism mainly through the pentose phosphate pathway (PPP). It is well known that this enzyme participates in the antioxidant/oxidant balance via the synthesis of energy-rich molecules: nicotinamide adenine dinucleotide phosphate reduced (NADPH), the reduced form of flavin adenine dinucleotide (FADH) and glutathione (GSH), controlling reactive oxygen species generation. Coronavirus disease 19 (COVID-19), induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a public health problem that has caused approximately 4.5 million deaths since December 2019. Concerning the role of G6PD in COVID-19 development, it is known from the existing literature that G6PD-deficient patients infected with SARS-CoV-2 are more susceptible to thrombosis and hemolysis, suggesting that G6PD deficiency facilitates infection by SARS-CoV-2. Concerning G6PD and neuropathology, it has been observed that deficiency of this enzyme is also present with an increase in oxidative markers. Concerning the role of G6PD and the neurological manifestations of COVID-19, it has been reported that the enzymatic deficiency in patients infected with SARSCoV- 2 exacerbates the disease, and, in some clinical reports, an increase in hemolysis and thrombosis was observed when patients were treated with hydroxychloroquine (OH-CQ), a drug with oxidative properties. In the present work, we summarize the evidence of the role of G6PD in COVID- 19 and its possible role in the generation of oxidative stress and glucose metabolism deficits, and inflammation present in this respiratory disease and its progression including neurological manifestations.

Keywords: G6PD, GSH, COVID-19, SARS-CoV-2, Hydroxychloroquine, Reactive oxygen species.

Graphical Abstract
[1]
Leung, N.H.L. Transmissibility and transmission of respiratory viruses. Nat. Rev. Microbiol., 2021, 19(8), 528-545.
[http://dx.doi.org/10.1038/s41579-021-00535-6] [PMID: 33753932]
[2]
Kendall, E.J.; Bynoe, M.L.; Tyrrell, D.A. Virus isolations from common colds occurring in a residential school. BMJ, 1962, 2(5297), 82-86.
[http://dx.doi.org/10.1136/bmj.2.5297.82] [PMID: 14455113]
[3]
Pal, M.; Berhanu, G.; Desalegn, C.; Kandi, V. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): An update. Cureus, 2020, 12(3), e7423.
[http://dx.doi.org/10.7759/cureus.7423] [PMID: 32337143]
[4]
Li, Y.; Renner, D.M.; Comar, C.E.; Whelan, J.N.; Reyes, H.M.; Cardenas-Diaz, F.L.; Truitt, R.; Tan, L.H.; Dong, B.; Alysandratos, K.D.; Huang, J.; Palmer, J.N.; Adappa, N.D.; Kohanski, M.A.; Kotton, D.N.; Silverman, R.H.; Yang, W.; Morrisey, E.; Cohen, N.A.; Weiss, S.R. SARS-CoV-2 induces double-stranded rna-mediated innate immune responses in respiratory epithelial derived cells and cardiomyocytes. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.09.24.312553]
[5]
Chen, B.; Tian, E-K.; He, B.; Tian, L.; Han, R.; Wang, S.; Xiang, Q.; Zhang, S.; El Arnaout, T.; Cheng, W. Overview of lethal human coronaviruses. Signal Transduct. Target. Ther., 2020, 5(1), 89.
[http://dx.doi.org/10.1038/s41392-020-0190-2] [PMID: 32533062]
[6]
Zhong, N.S.; Zheng, B.J.; Li, Y.M.; Poon, L.L.M.; Xie, Z.H.; Chan, K.H.; Li, P.H.; Tan, S.Y.; Chang, Q.; Xie, J.P.; Liu, X.Q.; Xu, J.; Li, D.X.; Yuen, K.Y.; Peiris, J.S.M.; Guan, Y. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet, 2003, 362(9393), 1353-1358.
[http://dx.doi.org/10.1016/S0140-6736(03)14630-2] [PMID: 14585636]
[7]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y-M.; Wang, W.; Song, Z-G.; Hu, Y.; Tao, Z-W.; Tian, J-H.; Pei, Y-Y.; Yuan, M-L.; Zhang, Y-L.; Dai, F-H.; Liu, Y.; Wang, Q-M.; Zheng, J-J.; Xu, L.; Holmes, E.C.; Zhang, Y-Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[8]
World Health Organization. WHO Coronavirus (COVID-19) Dashboard. WHO Coronavirus (COVID-19); Dashboard With Vaccination Data. Who, 2021, pp. 1-5.
[9]
Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P.; Meng, J.; Zhu, Z.; Zhang, Z.; Wang, J.; Sheng, J.; Quan, L.; Xia, Z.; Tan, W.; Cheng, G.; Jiang, T. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe, 2020, 27(3), 325-328.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[10]
Sun, Y.; Abriola, L.; Surovtseva, Y.V.; Lindenbach, B.D.; Guo, J. U Restriction of SARS-CoV-2 replication by targeting programmed -1 ribosomal frameshifting in vitro. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.10.21.349225]
[11]
Coutard, B.; Valle, C.; de Lamballerie, X.; Canard, B.; Seidah, N.G.; Decroly, E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res., 2020, 176, 104742.
[http://dx.doi.org/10.1016/j.antiviral.2020.104742] [PMID: 32057769]
[12]
Belouzard, S.; Millet, J.K.; Licitra, B.N.; Whittaker, G.R. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 2012, 4(6), 1011-1033.
[http://dx.doi.org/10.3390/v4061011] [PMID: 22816037]
[13]
Bosch, B.J.; van der Zee, R.; de Haan, C.A.M.; Rottier, P.J.M. The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. J. Virol., 2003, 77(16), 8801-8811.
[http://dx.doi.org/10.1128/JVI.77.16.8801-8811.2003] [PMID: 12885899]
[14]
Tai, W.; He, L.; Zhang, X.; Pu, J.; Voronin, D.; Jiang, S.; Zhou, Y.; Du, L. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol., 2020, 17(6), 613-620.
[http://dx.doi.org/10.1038/s41423-020-0400-4] [PMID: 32203189]
[15]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N-H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[16]
Rohaim, M.A.; El Naggar, R.F.; Clayton, E.; Munir, M. Structural and functional insights into non-structural proteins of coronaviruses. Microb. Pathog., 2021, 150, 104641.
[http://dx.doi.org/10.1016/j.micpath.2020.104641] [PMID: 33242646]
[17]
V’kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol., 2021, 19(3), 155-170.
[http://dx.doi.org/10.1038/s41579-020-00468-6] [PMID: 33116300]
[18]
Viner, R.M.; Mytton, O.T.; Bonell, C.; Melendez-Torres, G.J.; Ward, J.; Hudson, L.; Waddington, C.; Thomas, J.; Russell, S.; van der Klis, F.; Koirala, A.; Ladhani, S.; Panovska-Griffiths, J.; Davies, N.G.; Booy, R.; Eggo, R.M. Susceptibility to SARS-CoV-2 infection among children and adolescents compared with adults: A systematic review and meta-analysis. JAMA Pediatr., 2021, 175(2), 143-156.
[http://dx.doi.org/10.1001/jamapediatrics.2020.4573] [PMID: 32975552]
[19]
Monod, M.; Blenkinsop, A.; Xi, X.; Hebert, D.; Bershan, S.; Tietze, S.; Baguelin, M.; Bradley, V.C.; Chen, Y.; Coupland, H.; Filippi, S.; Ish-Horowicz, J.; McManus, M.; Mellan, T.; Gandy, A.; Hutchinson, M.; Unwin, H.J.T.; van Elsland, S.L.; Vollmer, M.A.C.; Weber, S.; Zhu, H.; Bezancon, A.; Ferguson, N.M.; Mishra, S.; Flaxman, S.; Bhatt, S.; Ratmann, O. Imperial College COVID-19 Response Team. Age groups that sustain resurging COVID-19 epidemics in the United States. Science, 2021, 371(6536), 371.
[http://dx.doi.org/10.1126/science.abe8372] [PMID: 33531384]
[20]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[21]
Goldstein, E.; Lipsitch, M.; Cevik, M. On the effect of age on the transmission of SARS-CoV-2 in households, schools, and the community. J. Infect. Dis., 2021, 223(3), 362-369.
[http://dx.doi.org/10.1093/infdis/jiaa691] [PMID: 33119738]
[22]
Tal, S.; Spectre, G.; Kornowski, R.; Perl, L. Venous thromboembolism complicated with COVID-19: What do we know so far? Acta Haematol., 2020, 143(5), 417-424.
[http://dx.doi.org/10.1159/000508233] [PMID: 32396903]
[23]
Beltrán-García, J.; Osca-Verdegal, R.; Pallardó, F.V.; Ferreres, J.; Rodríguez, M.; Mulet, S.; Sanchis-Gomar, F.; Carbonell, N.; García-Giménez, J.L. Oxidative stress and inflammation in COVID-19-associated sepsis: The potential role of anti-oxidant therapy in avoiding disease progression. Antioxidants, 2020, 9.
[24]
Iwasaki, M.; Saito, J.; Zhao, H.; Sakamoto, A.; Hirota, K.; Ma, D. Inflammation triggered by SARS-CoV-2 and ACE2 augment drives multiple organ failure of severe COVID-19: Molecular mechanisms and implications. Inflammation, 2021, 44(1), 13-34.
[http://dx.doi.org/10.1007/s10753-020-01337-3] [PMID: 33029758]
[25]
Jordan, R.E.; Adab, P.; Cheng, K.K. Covid-19: Risk factors for severe disease and death. BMJ, 2020, 368, m1198.
[http://dx.doi.org/10.1136/bmj.m1198] [PMID: 32217618]
[26]
Rockx, B.; Baas, T.; Zornetzer, G.A.; Haagmans, B.; Sheahan, T.; Frieman, M.; Dyer, M.D.; Teal, T.H.; Proll, S.; van den Brand, J.; Baric, R.; Katze, M.G. Early upregulation of acute respiratory distress syndrome-associated cytokines promotes lethal disease in an aged-mouse model of severe acute respiratory syndrome coronavirus infection. J. Virol., 2009, 83(14), 7062-7074.
[http://dx.doi.org/10.1128/JVI.00127-09] [PMID: 19420084]
[27]
Liu, K.; Chen, Y.; Lin, R.; Han, K. Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged patients. J. Infect., 2020, 80(6), e14-e18.
[http://dx.doi.org/10.1016/j.jinf.2020.03.005] [PMID: 32171866]
[28]
Go, Y-M.; Kang, S-M.; Roede, J.R.; Orr, M.; Jones, D.P. Increased inflammatory signaling and lethality of influenza H1N1 by nuclear thioredoxin-1. PLoS One, 2011, 6(4), e18918.
[http://dx.doi.org/10.1371/journal.pone.0018918] [PMID: 21526215]
[29]
Mastronarde, J.G.; Monick, M.M.; Hunninghake, G.W. Oxidant tone regulates IL-8 production in epithelium infected with respiratory syncytial virus. Am. J. Respir. Cell Mol. Biol., 1995, 13(2), 237-244.
[http://dx.doi.org/10.1165/ajrcmb.13.2.7626291] [PMID: 7626291]
[30]
Delgado-Roche, L.; Mesta, F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch. Med. Res., 2020, 51(5), 384-387.
[http://dx.doi.org/10.1016/j.arcmed.2020.04.019] [PMID: 32402576]
[31]
Ng, M.P.E.; Lee, J.C.Y.; Loke, W.M.; Yeo, L.L.L.; Quek, A.M.L.; Lim, E.C.H.; Halliwell, B.; Seet, R.C-S. Does influenza A infection increase oxidative damage? Antioxid. Redox Signal., 2014, 21(7), 1025-1031.
[http://dx.doi.org/10.1089/ars.2014.5907] [PMID: 24673169]
[32]
Erkekoğlu, P.; Aşçı, A.; Ceyhan, M.; Kızılgün, M.; Schweizer, U.; Ataş, C.; Kara, A.; Koçer Giray, B. Selenium levels, selenoenzyme activities and oxidant/antioxidant parameters in H1N1-infected children. Turk. J. Pediatr., 2013, 55(3), 271-282.
[PMID: 24217073]
[33]
Buffinton, G.D.; Christen, S.; Peterhans, E.; Stocker, R. Oxidative stress in lungs of mice infected with influenza A virus. Free Radic. Res. Commun., 1992, 16(2), 99-110.
[http://dx.doi.org/10.3109/10715769209049163] [PMID: 1321077]
[34]
Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol., 2020, 20(6), 363-374.
[http://dx.doi.org/10.1038/s41577-020-0311-8] [PMID: 32346093]
[35]
Zhang, B.; Zhou, X.; Qiu, Y.; Song, Y.; Feng, F.; Feng, J.; Song, Q.; Jia, Q.; Wang, J. Clinical characteristics of 82 cases of death from COVID-19. PLoS One, 2020, 15(7), e0235458.
[http://dx.doi.org/10.1371/journal.pone.0235458] [PMID: 32645044]
[36]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[37]
Gheblawi, M.; Wang, K.; Viveiros, A.; Nguyen, Q.; Zhong, J-C.; Turner, A.J.; Raizada, M.K.; Grant, M.B.; Oudit, G.Y. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: Celebrating the 20th anniversary of the discovery of ACE2. Circ. Res., 2020, 126(10), 1456-1474.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317015] [PMID: 32264791]
[38]
Wen, H.; Gwathmey, J.K.; Xie, L-H. Oxidative stress-mediated effects of angiotensin II in the cardiovascular system. World J. Hypertens., 2012, 2(4), 34-44.
[http://dx.doi.org/10.5494/wjh.v2.i4.34] [PMID: 24587981]
[39]
Wang, H.; Yang, P.; Liu, K.; Guo, F.; Zhang, Y.; Zhang, G.; Jiang, C. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res., 2008, 18(2), 290-301.
[http://dx.doi.org/10.1038/cr.2008.15] [PMID: 18227861]
[40]
Cárdenas-Rodríguez, N.; Bandala, C.; Vanoye-Carlo, A.; Ignacio-Mejía, I.; Gómez-Manzo, S.; Hernández-Cruz, E.Y.; Pedraza-Chaverri, J.; Carmona-Aparicio, L.; Hernández-Ochoa, B. Use of antioxidants for the neuro-therapeutic management of COVID-19. Antioxidants, 2021, 10.
[41]
Olagnier, D.; Farahani, E.; Thyrsted, J.; Blay-Cadanet, J.; Herengt, A.; Idorn, M.; Hait, A.; Hernaez, B.; Knudsen, A.; Iversen, M.B.; Schilling, M.; Jørgensen, S.E.; Thomsen, M.; Reinert, L.S.; Lappe, M.; Hoang, H-D.; Gilchrist, V.H.; Hansen, A.L.; Ottosen, R.; Nielsen, C.G.; Møller, C.; van der Horst, D.; Peri, S.; Balachandran, S.; Huang, J.; Jakobsen, M.; Svenningsen, E.B.; Poulsen, T.B.; Bartsch, L.; Thielke, A.L.; Luo, Y.; Alain, T.; Rehwinkel, J.; Alcamí, A.; Hiscott, J.; Mogensen, T.H.; Paludan, S.R.; Holm, C.K. SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat. Commun., 2020, 11(1), 4938.
[http://dx.doi.org/10.1038/s41467-020-18764-3] [PMID: 33009401]
[42]
Sajadimajd, S.; Khazaei, M. Oxidative stress and cancer: The role of Nrf2. Curr. Cancer Drug Targets, 2018, 18(6), 538-557.
[http://dx.doi.org/10.2174/1568009617666171002144228] [PMID: 28969555]
[43]
Saheb Sharif-Askari, N.; Saheb Sharif-Askari, F.; Mdkhana, B.; Hussain Alsayed, H.A.; Alsafar, H.; Alrais, Z.F.; Hamid, Q.; Halwani, R. Upregulation of oxidative stress gene markers during SARS-COV-2 viral infection. Free Radic. Biol. Med., 2021, 172, 688-698.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.06.018] [PMID: 34186206]
[44]
Muhammad, Y.; Kani, Y.A.; Iliya, S.; Muhammad, J.B.; Binji, A.; El-Fulaty Ahmad, A.; Kabir, M.B.; Umar Bindawa, K.; Ahmed, A. Deficiency of antioxidants and increased oxidative stress in COVID-19 patients: A cross-sectional comparative study in Jigawa, Northwestern Nigeria. SAGE Open Med., 2021, 9, 2050312121991246.
[http://dx.doi.org/10.1177/2050312121991246] [PMID: 33614035]
[45]
Yildiz, H.; Alp, H.H.; Ekin, S.; Arisoy, A.; Gunbatar, H.; Asker, S.; Cilingir, B.M.; Sunnetcioglu, A.; Celikel, M.; Esen, N.; Bedirhanoglu, S.; Baykal, N.D.; Haylu, M. Analysis of endogenous oxidative damage markers and association with pulmonary involvement severity in patients with SARS-CoV-2 pneumonia. Infect. Dis., 2021, 51, 429-434.
[46]
Mehri, F.; Rahbar, A.H.; Ghane, E.T.; Souri, B.; Esfahani, M. Changes in oxidative markers in COVID-19 patients. Arch. Med. Res., 2021, 52(8), 843-849.
[http://dx.doi.org/10.1016/j.arcmed.2021.06.004] [PMID: 34154831]
[47]
Martín-Fernández, M.; Aller, R.; Heredia-Rodríguez, M.; Gómez-Sánchez, E.; Martínez-Paz, P.; Gonzalo-Benito, H.; Sánchez-de Prada, L.; Gorgojo, Ó.; Carnicero-Frutos, I.; Tamayo, E.; Tamayo-Velasco, Á. Lipid peroxidation as a hallmark of severity in COVID-19 patients. Redox Biol., 2021, 48, 102181.
[http://dx.doi.org/10.1016/j.redox.2021.102181] [PMID: 34768063]
[48]
Zendelovska, D.; Atanasovska, E.; Petrushevska, M.; Spasovska, K.; Stevanovikj, M.; Demiri, I.; Labachevski, N. Evaluation of oxidative stress markers in hospitalized patients with moderate and severe COVID-19. Rom. J. Intern. Med., 2021, 59(4), 375-383.
[http://dx.doi.org/10.2478/rjim-2021-0014] [PMID: 33910269]
[49]
Petrushevska, M.; Zendelovska, D.; Atanasovska, E.; Eftimov, A.; Spasovska, K. Presentation of cytokine profile in relation to oxidative stress parameters in patients with severe COVID-19: A case-control pilot study. F1000 Res., 2021, 10, 719.
[http://dx.doi.org/10.12688/f1000research.55166.2] [PMID: 34868558]
[50]
Gao, D.; Xu, M.; Wang, G.; Lv, J.; Ma, X.; Guo, Y.; Zhang, D.; Yang, H.; Jiang, W.; Deng, F.; Xia, G.; Lu, Z.; Lv, L.; Gong, S. The efficiency and safety of high-dose vitamin C in patients with COVID-19: A retrospective cohort study. Aging (Albany NY), 2021, 13(5), 7020-7034.
[http://dx.doi.org/10.18632/aging.202557] [PMID: 33638944]
[51]
Zhao, B.; Ling, Y.; Li, J.; Peng, Y.; Huang, J.; Wang, Y.; Qu, H.; Gao, Y.; Li, Y.; Hu, B.; Lu, S.; Lu, H.; Zhang, W.; Mao, E. Beneficial aspects of high dose intravenous vitamin C on patients with COVID-19 pneumonia in severe condition: A retrospective case series study. Ann. Palliat. Med., 2021, 10(2), 1599-1609.
[http://dx.doi.org/10.21037/apm-20-1387] [PMID: 33222462]
[52]
Esmaeili Gouvarchin Ghaleh, H.; Hosseini, A.; Aghamollaei, H.; Fasihi-Ramandi, M.; Alishiri, G.; Saeedi-Boroujeni, A.; Hassanpour, K.; Mahmoudian-Sani, M-R.; Farnoosh, G. NLRP3 inflammasome activation and oxidative stress status in the mild and moderate SARS-CoV-2 infected patients: Impact of melatonin as a medicinal supplement. Z. Naturforsch. C J. Biosci., 2021, 77(1-2), 37-42.
[http://dx.doi.org/10.1515/znc-2021-0101] [PMID: 34355546]
[53]
Zhu, D-D.; Tan, X-M.; Lu, L-Q.; Yu, S-J.; Jian, R-L.; Liang, X-F.; Liao, Y-X.; Fan, W.; Barbier-Torres, L.; Yang, A.; Yang, H-P.; Liu, T. Interplay between nuclear factor erythroid 2-related factor 2 and inflammatory mediators in COVID-19-related liver injury. World J. Gastroenterol., 2021, 27(22), 2944-2962.
[http://dx.doi.org/10.3748/wjg.v27.i22.2944] [PMID: 34168400]
[54]
McCord, J.M.; Hybertson, B.M.; Cota-Gomez, A.; Geraci, K.P.; Gao, B. Nrf2 Activator PB125(®) as a potential therapeutic agent against COVID-19. Antioxidants, 2020, 9.
[55]
Kircheis, R.; Haasbach, E.; Lueftenegger, D.; Heyken, W.T.; Ocker, M.; Planz, O. NF-κB pathway as a potential target for treatment of critical stage COVID-19 patients. Front. Immunol., 2020, 11, 598444.
[http://dx.doi.org/10.3389/fimmu.2020.598444] [PMID: 33362782]
[56]
Sohn, K.M.; Lee, S.G.; Kim, H.J.; Cheon, S.; Jeong, H.; Lee, J.; Kim, I.S.; Silwal, P.; Kim, Y.J.; Paik, S.; Chung, C.; Park, C.; Kim, Y.S.; Jo, E.K. COVID-19 Patients upregulate toll-like receptor 4-mediated inflammatory signaling that mimics bacterial sepsis. J. Korean Med. Sci., 2020, 35(38), e343.
[http://dx.doi.org/10.3346/jkms.2020.35.e343] [PMID: 32989935]
[57]
Rojo de la Vega, M.; Chapman, E.; Zhang, D.D. NRF2 and the hallmarks of cancer. Cancer Cell, 2018, 34(1), 21-43.
[http://dx.doi.org/10.1016/j.ccell.2018.03.022] [PMID: 29731393]
[58]
Baird, L.; Yamamoto, M. The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol. Cell. Biol., 2020, 40(13), 40.
[http://dx.doi.org/10.1128/MCB.00099-20] [PMID: 32284348]
[59]
Heiss, E.H.; Schachner, D.; Zimmermann, K.; Dirsch, V.M. Glucose availability is a decisive factor for Nrf2-mediated gene expression. Redox Biol., 2013, 1(1), 359-365.
[http://dx.doi.org/10.1016/j.redox.2013.06.001] [PMID: 24024172]
[60]
Miri-Aliabad, G.; Khajeh, A.; Shahraki, T. Prevalence of G6PD deficiency in children with hepatitis A. Int. J. Hematol. Stem Cell Res, 2017, 11, 92-95.
[61]
Ahmad, B.S.; Ahmad, A.; Jamil, S.; Abubakar Mohsin Ehsanullah, S.A.; Munir, A. Severe haemolysis and renal failure precipitated by hepatitis E virus in G6PD Deficient patient: A case report. J. Pak. Med. Assoc., 2018, 68(9), 1397-1399.
[PMID: 30317274]
[62]
Wu, Y-H.; Tseng, C-P.; Cheng, M-L.; Ho, H-Y.; Shih, S-R.; Chiu, D.T-Y. Glucose-6-phosphate dehydrogenase deficiency enhances human coronavirus 229E infection. J. Infect. Dis., 2008, 197(6), 812-816.
[http://dx.doi.org/10.1086/528377] [PMID: 18269318]
[63]
Buinitskaya, Y.; Gurinovich, R.; Wlodaver, C.G.; Kastsiuchenka, S. Centrality of G6PD in COVID-19: The biochemical rationale and clinical implications. Front. Med. (Lausanne), 2020, 7, 584112.
[http://dx.doi.org/10.3389/fmed.2020.584112] [PMID: 33195336]
[64]
Jain, S.K.; Parsanathan, R.; Levine, S.N.; Bocchini, J.A.; Holick, M.F.; Vanchiere, J.A. The potential link between inherited G6PD deficiency, oxidative stress, and vitamin D deficiency and the racial inequities in mortality associated with COVID-19. Free Radic. Biol. Med., 2020, 161, 84-91.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.10.002] [PMID: 33038530]
[65]
Vick, D.J. Glucose-6-phosphate dehydrogenase deficiency and COVID-19 infection. Mayo Clin. Proc., 2020, 95(8), 1803-1804.
[http://dx.doi.org/10.1016/j.mayocp.2020.05.035] [PMID: 32680625]
[66]
Leopold, J.A.; Cap, A.; Scribner, A.W.; Stanton, R.C.; Loscalzo, J. Glucose-6-phosphate dehydrogenase deficiency promotes endothelial oxidant stress and decreases endothelial nitric oxide bioavailability. FASEB J., 2001, 15(10), 1771-1773.
[http://dx.doi.org/10.1096/fj.00-0893fje] [PMID: 11481225]
[67]
Parsanathan, R.; Jain, S.K. Glucose-6-phosphate dehydrogenase deficiency increases cell adhesion molecules and activates human monocyte-endothelial cell adhesion: Protective role of l-cysteine. Arch. Biochem. Biophys., 2019, 663, 11-21.
[http://dx.doi.org/10.1016/j.abb.2018.12.023] [PMID: 30582899]
[68]
Gómez-Manzo, S.; Terrón-Hernández, J.; De la Mora-De la Mora, I.; González-Valdez, A.; Marcial-Quino, J.; García-Torres, I.; Vanoye-Carlo, A.; López-Velázquez, G.; Hernández-Alcántara, G.; Oria-Hernández, J.; Reyes-Vivas, H.; Enríquez-Flores, S. The stability of G6PD is affected by mutations with different clinical phenotypes. Int. J. Mol. Sci., 2014, 15(11), 21179-21201.
[http://dx.doi.org/10.3390/ijms151121179] [PMID: 25407525]
[69]
Ibrahim, H.; Perl, A.; Smith, D.; Lewis, T.; Kon, Z.; Goldenberg, R.; Yarta, K.; Staniloae, C.; Williams, M. Therapeutic blockade of inflammation in severe COVID-19 infection with intravenous N-acetylcysteine. Clin. Immunol., 2020, 219, 108544.
[http://dx.doi.org/10.1016/j.clim.2020.108544] [PMID: 32707089]
[70]
Kellner, M.; Noonepalle, S.; Lu, Q.; Srivastava, A.; Zemskov, E.; Black, S.M. ROS Signaling in the Pathogenesis of Acute Lung Injury (ALI) and acute respiratory distress syndrome (ARDS). Adv. Exp. Med. Biol., 2017, 967, 105-137.
[http://dx.doi.org/10.1007/978-3-319-63245-2_8] [PMID: 29047084]
[71]
Chen, K-K.; Minakuchi, M.; Wuputra, K.; Ku, C-C.; Pan, J-B.; Kuo, K-K.; Lin, Y-C.; Saito, S.; Lin, C-S.; Yokoyama, K.K. Redox control in the pathophysiology of influenza virus infection. BMC Microbiol., 2020, 20(1), 214.
[http://dx.doi.org/10.1186/s12866-020-01890-9] [PMID: 32689931]
[72]
Baker, D.H.; Wood, R.J. Cellular antioxidant status and human immunodeficiency virus replication. Nutr. Rev., 1992, 50(1), 15-18.
[http://dx.doi.org/10.1111/j.1753-4887.1992.tb02456.x] [PMID: 1579264]
[73]
Colado Simão, A.N.; Victorino, V.J.; Morimoto, H.K.; Reiche, E.M.V.; Panis, C. Redox-driven events in the human immunodeficiency virus type 1 (HIV-1) infection and their clinical implications. Curr. HIV Res., 2015, 13(2), 143-150.
[http://dx.doi.org/10.2174/1570162X13666150313152422] [PMID: 25771095]
[74]
Garofalo, R.P.; Kolli, D.; Casola, A. Respiratory syncytial virus infection: Mechanisms of redox control and novel therapeutic opportunities. Antioxid. Redox Signal., 2013, 18(2), 186-217.
[http://dx.doi.org/10.1089/ars.2011.4307] [PMID: 22799599]
[75]
Soto, M.E.; Guarner-Lans, V.; Soria-Castro, E.; Manzano Pech, L.; Pérez-Torres, I. Is antioxidant therapy a useful complementary measure for COVID-19 treatment? An algorithm for its application. Medicina (Kaunas), 2020, 56(8), 56.
[http://dx.doi.org/10.3390/medicina56080386] [PMID: 32752010]
[76]
Uchide, N.; Toyoda, H. Antioxidant therapy as a potential approach to severe influenza-associated complications. Molecules, 2011, 16(3), 2032-2052.
[http://dx.doi.org/10.3390/molecules16032032] [PMID: 21358592]
[77]
Staal, F.J.; Ela, S.W.; Roederer, M.; Anderson, M.T.; Herzenberg, L.A.; Herzenberg, L.A. Glutathione deficiency and human immunodeficiency virus infection. Lancet, 1992, 339(8798), 909-912.
[http://dx.doi.org/10.1016/0140-6736(92)90939-Z] [PMID: 1348307]
[78]
Aubry, M.; Laughhunn, A.; Santa Maria, F.; Lanteri, M.C.; Stassinopoulos, A.; Musso, D. Pathogen inactivation of Dengue virus in red blood cells using amustaline and glutathione. Transfusion, 2017, 57(12), 2888-2896.
[http://dx.doi.org/10.1111/trf.14318] [PMID: 28921542]
[79]
Laughhunn, A.; Huang, Y.S.; Vanlandingham, D.L.; Lanteri, M.C.; Stassinopoulos, A. Inactivation of chikungunya virus in blood components treated with amotosalen/ultraviolet A light or amustaline/glutathione. Transfusion, 2018, 58(3), 748-757.
[http://dx.doi.org/10.1111/trf.14442] [PMID: 29322519]
[80]
Herzenberg, L.A.; De Rosa, S.C.; Dubs, J.G.; Roederer, M.; Anderson, M.T.; Ela, S.W.; Deresinski, S.C.; Herzenberg, L.A. Glutathione deficiency is associated with impaired survival in HIV disease. Proc. Natl. Acad. Sci. USA, 1997, 94(5), 1967-1972.
[http://dx.doi.org/10.1073/pnas.94.5.1967] [PMID: 9050888]
[81]
Tsai, K.J.; Hung, I.J.; Chow, C.K.; Stern, A.; Chao, S.S.; Chiu, D.T. Impaired production of nitric oxide, superoxide, and hydrogen peroxide in glucose 6-phosphate-dehydrogenase-deficient granulocytes. FEBS Lett., 1998, 436(3), 411-414.
[http://dx.doi.org/10.1016/S0014-5793(98)01174-0] [PMID: 9801159]
[82]
Yamasaki, H. Blood nitrate and nitrite modulating nitric oxide bioavailability: Potential therapeutic functions in COVID-19. Nitric Oxide, 2020, 103, 29-30.
[83]
Ignarro, L.J. Inhaled NO and COVID-19. Br. J. Pharmacol., 2020, 177(16), 3848-3849.
[http://dx.doi.org/10.1111/bph.15085] [PMID: 32346862]
[84]
Parsanathan, R.; Jain, S.K. L-Cysteine in vitro can restore cellular glutathione and inhibits the expression of cell adhesion molecules in G6PD-deficient monocytes. Amino Acids, 2018, 50(7), 909-921.
[http://dx.doi.org/10.1007/s00726-018-2559-x] [PMID: 29626298]
[85]
Jain, S.K.; Palmer, M. Effect of glucose-6-phosphate dehydrogenase deficiency on reduced and oxidized glutathione and lipid peroxide levels in the blood of African-Americans. Clin. Chim. Acta. Int. J. Clin. Chem., 1996, 253, 181-183.
[86]
Lushchak, V.I. Glutathione homeostasis and functions: Potential targets for medical interventions. J. Amino Acids, 2012, 2012, 736837.
[http://dx.doi.org/10.1155/2012/736837] [PMID: 22500213]
[87]
Davies, K.J. The broad spectrum of responses to oxidants in proliferating cells: A new paradigm for oxidative stress. IUBMB Life, 1999, 48(1), 41-47.
[http://dx.doi.org/10.1080/713803463] [PMID: 10791914]
[88]
Burdon, R.H. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic. Biol. Med., 1995, 18(4), 775-794.
[http://dx.doi.org/10.1016/0891-5849(94)00198-S] [PMID: 7750801]
[89]
Berg, J.M.; Tymoczko, J.L.; Stryer, L. Biochemistry; W H Freeman: New York, 2002. Available from: https://www.ncbi.nlm. nih.gov/books/NBK21154/
[90]
Tang, H-Y.; Ho, H-Y.; Wu, P-R.; Chen, S-H.; Kuypers, F.A.; Cheng, M-L.; Chiu, D.T-Y. Inability to maintain GSH pool in G6PD-deficient red cells causes futile AMPK activation and irreversible metabolic disturbance. Antioxid. Redox Signal., 2015, 22(9), 744-759.
[http://dx.doi.org/10.1089/ars.2014.6142] [PMID: 25556665]
[91]
Nkhoma, E.T.; Poole, C.; Vannappagari, V.; Hall, S.A.; Beutler, E. The global prevalence of glucose-6-phosphate dehydrogenase deficiency: A systematic review and meta-analysis. Blood Cells Mol. Dis., 2009, 42(3), 267-278.
[http://dx.doi.org/10.1016/j.bcmd.2008.12.005] [PMID: 19233695]
[92]
Luzzatto, L.; Arese, P. Favism and glucose-6-phosphate dehydrogenase deficiency. N. Engl. J. Med., 2018, 378(1), 60-71.
[http://dx.doi.org/10.1056/NEJMra1708111] [PMID: 29298156]
[93]
Jamerson, B.D.; Haryadi, T.H.; Bohannon, A. Glucose-6-phosphate dehydrogenase deficiency: An actionable risk factor for patients with COVID-19? Arch. Med. Res., 2020, 51(7), 743-744.
[http://dx.doi.org/10.1016/j.arcmed.2020.06.006] [PMID: 32600868]
[94]
Chinevere, T.D.; Murray, C.K.; Grant, E., Jr; Johnson, G.A.; Duelm, F.; Hospenthal, D.R. Prevalence of glucose-6-phosphate dehydrogenase deficiency in U.S. Army personnel. Mil. Med., 2006, 171(9), 905-907.
[http://dx.doi.org/10.7205/MILMED.171.9.905] [PMID: 17036616]
[95]
Al-Abdi, S.Y.; Alsaigh, A.S.; Aldawoud, F.L.; Al Sadiq, A.A. Lower reference limits of quantitative cord glucose-6-phosphate dehydrogenase estimated from healthy term neonates according to the Clinical and Laboratory Standards Institute guidelines: A cross sectional retrospective study. BMC Pediatr., 2013, 13(1), 137.
[http://dx.doi.org/10.1186/1471-2431-13-137] [PMID: 24016342]
[96]
Al-Abdi, S.; Al-Aamri, M. G6PD deficiency in the COVID-19 pandemic: Ghost within ghost. Hematol. Oncol. Stem Cell Ther., 2021, 14(1), 84-85.
[http://dx.doi.org/10.1016/j.hemonc.2020.04.002] [PMID: 32325028]
[97]
Pai, G.S.; Sprenkle, J.A.; Do, T.T.; Mareni, C.E.; Migeon, B.R. Localization of loci for hypoxanthine phosphoribosyltransferase and glucose-6-phosphate dehydrogenase and biochemical evidence of nonrandom X chromosome expression from studies of a human X-autosome translocation. Proc. Natl. Acad. Sci. USA, 1980, 77(5), 2810-2813.
[http://dx.doi.org/10.1073/pnas.77.5.2810] [PMID: 6930669]
[98]
Wakao, S.; Andre, C.; Benning, C. Functional analyses of cytosolic glucose-6-phosphate dehydrogenases and their contribution to seed oil accumulation in Arabidopsis. Plant Physiol., 2008, 146(1), 277-288.
[http://dx.doi.org/10.1104/pp.107.108423] [PMID: 17993547]
[99]
Landi, S.; Nurcato, R.; De Lillo, A.; Lentini, M.; Grillo, S.; Esposito, S. Glucose-6-phosphate dehydrogenase plays a central role in the response of tomato (Solanum lycopersicum) plants to short and long-term drought. Plant Physiol. Biochem. PPB, 2016, 105, 79-89.
[http://dx.doi.org/10.1016/j.plaphy.2016.04.013] [PMID: 27085599]
[100]
Luzzatto, L.; Battistuzzi, G. Glucose-6-phosphate dehydrogenase. Adv. Hum. Genet., 1985, 14, 217-329, 386-388.
[PMID: 3887862]
[101]
Gómez-Manzo, S.; Marcial-Quino, J.; Vanoye-Carlo, A.; Serrano-Posada, H.; Ortega-Cuellar, D.; González-Valdez, A.; Castillo-Rodríguez, R.A.; Hernández-Ochoa, B.; Sierra-Palacios, E.; Rodríguez-Bustamante, E.; Arreguin-Espinosa, R. Glucose-6-phosphate dehydrogenase: Update and analysis of new mutations around the world. Int. J. Mol. Sci., 2016, 17(12), 17.
[http://dx.doi.org/10.3390/ijms17122069] [PMID: 27941691]
[102]
Au, S.W.; Gover, S.; Lam, V.M.; Adams, M.J. Human glucose-6-phosphate dehydrogenase: The crystal structure reveals a structural NADP(+) molecule and provides insights into enzyme deficiency. Structure, 2000, 8(3), 293-303.
[http://dx.doi.org/10.1016/S0969-2126(00)00104-0] [PMID: 10745013]
[103]
Kotaka, M.; Gover, S.; Vandeputte-Rutten, L.; Au, S.W.N.; Lam, V.M.S.; Adams, M.J. Structural studies of glucose-6-phosphate and NADP+ binding to human glucose-6-phosphate dehydrogenase. Acta Crystallogr. D Biol. Crystallogr., 2005, 61(Pt 5), 495-504.
[http://dx.doi.org/10.1107/S0907444905002350] [PMID: 15858258]
[104]
Beutler, E. Glucose-6-phosphate dehydrogenase deficiency. N. Engl. J. Med., 1991, 324(3), 169-174.
[http://dx.doi.org/10.1056/NEJM199101173240306] [PMID: 1984194]
[105]
Luzzatto, L.; Ally, M.; Notaro, R. Glucose-6-phosphate dehydrogenase deficiency. Blood, 2020, 136(11), 1225-1240.
[http://dx.doi.org/10.1182/blood.2019000944] [PMID: 32702756]
[106]
Minucci, A.; Giardina, B.; Zuppi, C.; Capoluongo, E. Glucose-6-phosphate dehydrogenase laboratory assay: How, when, and why? IUBMB Life, 2009, 61(1), 27-34.
[http://dx.doi.org/10.1002/iub.137] [PMID: 18942156]
[107]
Youssef, J.G.; Zahiruddin, F.; Youssef, G.; Padmanabhan, S.; Ensor, J.; Pingali, S.R.; Zu, Y.; Sahay, S.; Iyer, S.P. G6PD deficiency and severity of COVID19 pneumonia and acute respiratory distress syndrome: Tip of the iceberg? Ann. Hematol., 2021, 100(3), 667-673.
[http://dx.doi.org/10.1007/s00277-021-04395-1] [PMID: 33439304]
[108]
Aydemir, D.; Ulusu, N.N. Is glucose-6-phosphate dehydrogenase enzyme deficiency a factor in Coronavirus-19 (COVID-19) infections and deaths? Pathog. Glob. Health, 2020, 114(3), 109-110.
[http://dx.doi.org/10.1080/20477724.2020.1751388] [PMID: 32286926]
[109]
Albertsen, J.; Ommen, H.B.; Wandler, A.; Munk, K. Fatal haemolytic crisis with microvascular pulmonary obstruction mimicking a pulmonary embolism in a young african man with glucose-6-phosphate dehydrogenase deficiency. BMJ Case Rep., 2014, 2014
[http://dx.doi.org/10.1136/bcr-2013-201432]]
[110]
Oxley, T.J.; Mocco, J.; Majidi, S.; Kellner, C.P.; Shoirah, H.; Singh, I.P.; De Leacy, R.A.; Shigematsu, T.; Ladner, T.R.; Yaeger, K.A.; Skliut, M.; Weinberger, J.; Dangayach, N.S.; Bederson, J.B.; Tuhrim, S.; Fifi, J.T. Large-vessel stroke as a presenting feature of Covid-19 in the young. N. Engl. J. Med., 2020, 382(20), e60.
[http://dx.doi.org/10.1056/NEJMc2009787] [PMID: 32343504]
[111]
Li, Y. Ministry of science and technology of china: Chloroquine phosphate is effective in the treatment of novel coronavirus pneumonia. Available from: http://news.ynet.com/2020/02/17/2388070t70.html
[112]
Takahashi, T.; Luzum, J.A.; Nicol, M.R.; Jacobson, P.A. Pharmacogenomics of COVID-19 therapies. NPJ Genom. Med., 2020, 5(1), 35.
[http://dx.doi.org/10.1038/s41525-020-00143-y] [PMID: 32864162]
[113]
Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; Zhan, S.; Lu, R.; Li, H.; Tan, W.; Liu, D. in vitro Antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis., 2020, 71(15), 732-739.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[114]
Abdulaziz, N.; Shah, A.R.; McCune, W.J. Hydroxychloroquine: Balancing the need to maintain therapeutic levels with ocular safety: An update. Curr. Opin. Rheumatol., 2018, 30(3), 249-255.
[http://dx.doi.org/10.1097/BOR.0000000000000500] [PMID: 29517495]
[115]
FDA. FDA letter to Request for Emergency Use Authorization For Use of Chloroquine Phosphate or Hydroxychloroquine Sulfate Supplied From the Strategic National Stockpile for Treatment of 2019 Coronavirus Disease. 2020. Available from: https://www. fda.gov/media/136534/download
[116]
Pastick, K.A.; Okafor, E.C.; Wang, F.; Lofgren, S.M.; Skipper, C.P.; Nicol, M.R.; Pullen, M.F.; Rajasingham, R.; McDonald, E.G.; Lee, T.C.; Schwartz, I.S.; Kelly, L.E.; Lother, S.A.; Mitjà, O.; Letang, E.; Abassi, M.; Boulware, D.R. Review: Hydroxychloroquine and chloroquine for treatment of SARS-CoV-2 (COVID- 19). Open Forum Infect. Dis., 2020, 7, ofaa130.
[117]
Dille, B.J.; Johnson, T.C. Inhibition of vesicular stomatitis virus glycoprotein expression by chloroquine. J. Gen. Virol., 1982, 62(Pt 1), 91-103.
[http://dx.doi.org/10.1099/0022-1317-62-1-91] [PMID: 6290597]
[118]
Simmons, G.; Reeves, J.D.; Rennekamp, A.J.; Amberg, S.M.; Piefer, A.J.; Bates, P. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc. Natl. Acad. Sci. USA, 2004, 101(12), 4240-4245.
[http://dx.doi.org/10.1073/pnas.0306446101] [PMID: 15010527]
[119]
Yang, Z-Y.; Huang, Y.; Ganesh, L.; Leung, K.; Kong, W-P.; Schwartz, O.; Subbarao, K.; Nabel, G.J. pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J. Virol., 2004, 78(11), 5642-5650.
[http://dx.doi.org/10.1128/JVI.78.11.5642-5650.2004] [PMID: 15140961]
[120]
Savarino, A.; Lucia, M.B.; Rastrelli, E.; Rutella, S.; Golotta, C.; Morra, E.; Tamburrini, E.; Perno, C.F.; Boelaert, J.R.; Sperber, K.; Cauda, R. Anti-HIV effects of chloroquine: Inhibition of viral particle glycosylation and synergism with protease inhibitors. J. Acquir. Immune Defic. Syndr., 2004, 35(3), 223-232.
[http://dx.doi.org/10.1097/00126334-200403010-00002] [PMID: 15076236]
[121]
Tsai, W.P.; Nara, P.L.; Kung, H.F.; Oroszlan, S. Inhibition of human immunodeficiency virus infectivity by chloroquine. AIDS Res. Hum. Retroviruses, 1990, 6(4), 481-489.
[http://dx.doi.org/10.1089/aid.1990.6.481] [PMID: 1692728]
[122]
Thorens, B.; Vassalli, P. Chloroquine and ammonium chloride prevent terminal glycosylation of immunoglobulins in plasma cells without affecting secretion. Nature, 1986, 321(6070), 618-620.
[http://dx.doi.org/10.1038/321618a0] [PMID: 3086747]
[123]
Yanturali, S.; Aksay, E.; Demir, O.F.; Atilla, R. Massive hydroxychloroquine overdose. Acta Anaesthesiol. Scand., 2004, 48(3), 379-381.
[http://dx.doi.org/10.1111/j.0001-5172.2004.0302.x] [PMID: 14982575]
[124]
de Olano, J.; Howland, M.A.; Su, M.K.; Hoffman, R.S.; Biary, R. Toxicokinetics of hydroxychloroquine following a massive overdose. Am. J. Emerg. Med., 2019, 37(12), 2264.e5-2264.e8.
[http://dx.doi.org/10.1016/j.ajem.2019.158387] [PMID: 31477360]
[125]
Furst, D.E. Pharmacokinetics of hydroxychloroquine and chloroquine during treatment of rheumatic diseases. Lupus, 1996, 5(1_suppl)(Suppl. 1), S11-S15.
[http://dx.doi.org/10.1177/0961203396005001041] [PMID: 8803904]
[126]
Warhurst, D.C.; Steele, J.C.P.; Adagu, I.S.; Craig, J.C.; Cullander, C. Hydroxychloroquine is much less active than chloroquine against chloroquine-resistant Plasmodium falciparum, in agreement with its physicochemical properties. J. Antimicrob. Chemother., 2003, 52(2), 188-193.
[http://dx.doi.org/10.1093/jac/dkg319] [PMID: 12837731]
[127]
Doyno, C.; Sobieraj, D.M.; Baker, W.L. Toxicity of chloroquine and hydroxychloroquine following therapeutic use or overdose. Clin. Toxicol. (Phila.), 2021, 59(1), 12-23.
[http://dx.doi.org/10.1080/15563650.2020.1817479] [PMID: 32960100]
[128]
Wajcman, H.; Galactéros, F. Glucose 6-phosphate dehydrogenase deficiency: A protection against malaria and a risk for hemolytic accidents. C. R. Biol., 2004, 327(8), 711-720.
[http://dx.doi.org/10.1016/j.crvi.2004.07.010] [PMID: 15506519]
[129]
Bhalla, A.; Jajoo, U.N.; Jain, A.P.; Kalantri, S.P. Haemolysis with anti-malarial drugs in glucose 6 phosphate dehydrogenase deficiency. J. Ayub Med. Coll. Abbottabad, 2004, 16(3), 75-78.
[PMID: 15631380]
[130]
Tang, W.; Cao, Z.; Han, M.; Wang, Z.; Chen, J.; Sun, W.; Wu, Y.; Xiao, W.; Liu, S.; Chen, E.; Chen, W.; Wang, X.; Yang, J.; Lin, J.; Zhao, Q.; Yan, Y.; Xie, Z.; Li, D.; Yang, Y.; Liu, L.; Qu, J.; Ning, G.; Shi, G.; Xie, Q. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: Open label, randomised controlled trial. BMJ, 2020, 369, m1849.
[http://dx.doi.org/10.1136/bmj.m1849] [PMID: 32409561]
[131]
Maillart, E.; Leemans, S.; Van Noten, H.; Vandergraesen, T.; Mahadeb, B.; Salaouatchi, M.T.; De Bels, D.; Clevenbergh, P. A case report of serious haemolysis in a glucose-6-phosphate dehydrogenase-deficient COVID-19 patient receiving hydroxychloroquine. Infect. Dis. (Lond.), 2020, 52(9), 659-661.
[http://dx.doi.org/10.1080/23744235.2020.1774644] [PMID: 32496938]
[132]
Afra, T.P.; Vasudevan Nampoothiri, R.; Razmi, T. M. Doubtful precipitation of hemolysis by hydroxychloroquine in glucose-6-phosphate dehydrogenase-deficient patient with COVID-19 infection. Eur. J. Haematol., 2020, 105(4), 512-513.
[http://dx.doi.org/10.1111/ejh.13460] [PMID: 32500556]
[133]
Youngster, I.; Arcavi, L.; Schechmaster, R.; Akayzen, Y.; Popliski, H.; Shimonov, J.; Beig, S.; Berkovitch, M. Medications and glucose-6-phosphate dehydrogenase deficiency: An evidence-based review. Drug Saf., 2010, 33(9), 713-726.
[http://dx.doi.org/10.2165/11536520-000000000-00000] [PMID: 20701405]
[134]
Beauverd, Y.; Adam, Y.; Assouline, B.; Samii, K. COVID-19 infection and treatment with hydroxychloroquine cause severe haemolysis crisis in a patient with glucose-6-phosphate dehydrogenase deficiency. Eur. J. Haematol., 2020, 105(3), 357-359.
[http://dx.doi.org/10.1111/ejh.13432] [PMID: 32324284]
[135]
De Franceschi, L.; Costa, E.; Dima, F.; Morandi, M.; Olivieri, O. Acute hemolysis by hydroxycloroquine was observed in G6PD-deficient patient with severe COVD-19 related lung injury. Eur. J. Intern. Med., 2020, 77, 136-137.
[http://dx.doi.org/10.1016/j.ejim.2020.04.020] [PMID: 32381323]
[136]
Kuipers, M.T.; van Zwieten, R.; Heijmans, J.; Rutten, C.E.; de Heer, K.; Kater, A.P.; Nur, E. Glucose-6-phosphate dehydrogenase deficiency-associated hemolysis and methemoglobinemia in a COVID-19 patient treated with chloroquine. Am. J. Hematol., 2020, 95(8), E194-E196.
[http://dx.doi.org/10.1002/ajh.25862] [PMID: 32390140]
[137]
Sasi, S.; Yassin, M.A.; Nair, A.P.; Al Maslamani, M.S. A case of COVID-19 in a patient with asymptomatic hemoglobin d thalassemia and glucose-6-phosphate dehydrogenase deficiency. Am. J. Case Rep., 2020, 21, e925788.
[http://dx.doi.org/10.12659/AJCR.925788] [PMID: 32697769]
[138]
Laslett, N.; Hibbs, J.; Hallett, M.; Ghaneie, A.; Zemba-Palko, V. Glucose-6-phosphate dehydrogenase deficiency-associated hemolytic anemia and methemoglobinemia in a patient treated with hydroxychloroquine in the era of COVID-19. Cureus, 2021, 13(5), e15232.
[http://dx.doi.org/10.7759/cureus.15232] [PMID: 34178542]
[139]
Aguilar, J.; Averbukh, Y. Hemolytic anemia in a glucose-6-phosphate dehydrogenase-deficient patient receiving hydroxychloroquine for COVID-19: A case report. Perm. J., 2020, 24(4), 24.
[http://dx.doi.org/10.7812/TPP/20.158] [PMID: 33183501]
[140]
Mastroianni, F.; Colombie, V.; Claes, G.; Gilles, A.; Vandergheynst, F.; Place, S. Hydroxychloroquine in a G6PD-deficient patient with COVID-19 complicated by haemolytic anaemia: Culprit or innocent bystander? Eur. J. Case Rep. Intern. Med., 2020, 7(9), 001875.
[http://dx.doi.org/10.12890/2020_001875] [PMID: 32908842]
[141]
Chaney, S.; Basirat, A.; McDermott, R.; Keenan, N.; Moloney, E. COVID-19 and hydroxychloroquine side-effects: Glucose 6-phosphate dehydrogenase deficiency (G6PD) and acute haemolytic anaemia. QJM, 2020, 113(12), 890-891.
[http://dx.doi.org/10.1093/qjmed/hcaa267] [PMID: 32936918]
[142]
Mohammad, S.; Clowse, M.E.B.; Eudy, A.; Criscione-Schreiber, L. Examination of hydroxychloroquine use and hemolytic anemia in G6PDH-deficient patients. Arthritis Care Res. (Hoboken), 2018, 70, 481-485.
[143]
Zuchelkowski, B.E.; Wang, L.; Gingras, S.; Xu, Q.; Yang, M.; Triulzi, D.; Page, G.P.; Gordeuk, V.R.; Kim-Shapiro, D.B.; Lee, J.S.; Gladwin, M.T. Brief report: Hydroxychloroquine does not induce hemolytic anemia or organ damage in a “humanized” G6PD A- mouse model. PLoS One, 2020, 15(10), e0240266.
[http://dx.doi.org/10.1371/journal.pone.0240266] [PMID: 33007039]
[144]
Schilling, W.H.K.; Bancone, G.; White, N.J. No evidence that chloroquine or hydroxychloroquine induce hemolysis in G6PD deficiency. Blood Cells Mol. Dis., 2020, 85, 102484.
[http://dx.doi.org/10.1016/j.bcmd.2020.102484] [PMID: 32836191]
[145]
Commons, R.J.; Simpson, J.A.; Thriemer, K.; Humphreys, G.S.; Abreha, T.; Alemu, S.G.; Añez, A.; Anstey, N.M.; Awab, G.R.; Baird, J.K.; Barber, B.E.; Borghini-Fuhrer, I.; Chu, C.S.; D’Alessandro, U.; Dahal, P.; Daher, A.; de Vries, P.J.; Erhart, A.; Gomes, M.S.M.; Gonzalez-Ceron, L.; Grigg, M.J.; Heidari, A.; Hwang, J.; Kager, P.A.; Ketema, T.; Khan, W.A.; Lacerda, M.V.G.; Leslie, T.; Ley, B.; Lidia, K.; Monteiro, W.M.; Nosten, F.; Pereira, D.B.; Phan, G.T.; Phyo, A.P.; Rowland, M.; Saravu, K.; Sibley, C.H.; Siqueira, A.M.; Stepniewska, K.; Sutanto, I.; Taylor, W.R.J.; Thwaites, G.; Tran, B.Q.; Tran, H.T.; Valecha, N.; Vieira, J.L.F.; Wangchuk, S.; William, T.; Woodrow, C.J.; Zuluaga-Idarraga, L.; Guerin, P.J.; White, N.J.; Price, R.N. The effect of chloroquine dose and primaquine on Plasmodium vivax recurrence: A WorldWide Antimalarial Resistance Network systematic review and individual patient pooled meta-analysis. Lancet Infect. Dis., 2018, 18(9), 1025-1034.
[http://dx.doi.org/10.1016/S1473-3099(18)30348-7] [PMID: 30033231]
[146]
Rodriguez-Rodriguez, P.; Almeida, A.; Bolaños, J.P. Brain energy metabolism in glutamate-receptor activation and excitotoxicity: Role for APC/C-Cdh1 in the balance glycolysis/pentose phosphate pathway. Neurochem. Int., 2013, 62(5), 750-756.
[http://dx.doi.org/10.1016/j.neuint.2013.02.005] [PMID: 23416042]
[147]
Rodríguez-Rodríguez, A.; Egea-Guerrero, J.J.; Murillo-Cabezas, F.; Carrillo-Vico, A. Oxidative stress in traumatic brain injury. Curr. Med. Chem., 2014, 21(10), 1201-1211.
[http://dx.doi.org/10.2174/0929867321666131217153310] [PMID: 24350853]
[148]
Cunningham, A.D.; Hwang, S.; Mochly-Rosen, D. Glucose-6-phosphate dehydrogenase deficiency and the need for a novel treatment to prevent kernicterus. Clin. Perinatol., 2016, 43(2), 341-354.
[http://dx.doi.org/10.1016/j.clp.2016.01.010] [PMID: 27235212]
[149]
Kaplan, M.; Hammerman, C.; Bhutani, V.K. The preterm infant: A high-risk situation for neonatal hyperbilirubinemia due to glucose-6-phosphate dehydrogenase deficiency. Clin. Perinatol., 2016, 43(2), 325-340.
[http://dx.doi.org/10.1016/j.clp.2016.01.008] [PMID: 27235211]
[150]
Yang, H-C.; Ma, T-H.; Tjong, W-Y.; Stern, A.; Chiu, D.T-Y. G6PD deficiency, redox homeostasis, and viral infections: Implications for SARS-CoV-2 (COVID-19). Free Radic. Res., 2021, 55(4), 364-374.
[http://dx.doi.org/10.1080/10715762.2020.1866757] [PMID: 33401987]
[151]
Stanton, R.C. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life, 2012, 64(5), 362-369.
[http://dx.doi.org/10.1002/iub.1017] [PMID: 22431005]
[152]
Bartolomé, F.; Abramov, A.Y. Measurement of mitochondrial NADH and FAD autofluorescence in live cells. Methods Mol. Biol., 2015, 1264, 263-270.
[http://dx.doi.org/10.1007/978-1-4939-2257-4_23] [PMID: 25631020]
[153]
Ma, X.; Hortelão, A.C.; Patiño, T.; Sánchez, S. Enzyme catalysis To power micro/nanomachines. ACS Nano, 2016, 10(10), 9111-9122.
[http://dx.doi.org/10.1021/acsnano.6b04108] [PMID: 27666121]
[154]
DeBerardinis, R.J.; Thompson, C.B. Cellular metabolism and disease: What do metabolic outliers teach us? Cell, 2012, 148(6), 1132-1144.
[http://dx.doi.org/10.1016/j.cell.2012.02.032] [PMID: 22424225]
[155]
Chen, Y.; Li, J.; Ou, Z.; Zhang, Y.; Liang, Z.; Deng, W.; Huang, W.; Ouyang, F.; Yu, J.; Xing, S.; Zeng, J. Association between aspirin-induced hemoglobin decline and outcome after acute ischemic stroke in G6PD-deficient patients. CNS Neurosci. Ther., 2021, 27(10), 1206-1213.
[http://dx.doi.org/10.1111/cns.13711] [PMID: 34369077]
[156]
Ou, Z.; Chen, Y.; Li, J.; Ouyang, F.; Liu, G.; Tan, S.; Huang, W.; Gong, X.; Zhang, Y.; Liang, Z.; Deng, W.; Xing, S.; Zeng, J. Glucose-6-phosphate dehydrogenase deficiency and stroke outcomes. Neurology, 2020, 95(11), e1471-e1478.
[http://dx.doi.org/10.1212/WNL.0000000000010245] [PMID: 32651291]
[157]
Alagoz, M.; Kherad, N.; Gunger, E.; Kaymaz, S.; Yuksel, A. The new CIC mutation associates with mental retardation and severity of seizure in turkish child with a rare class I glucose-6-phosphate dehydrogenase deficiency. J. Mol. Neurosci., 2020, 70(12), 2077-2084.
[http://dx.doi.org/10.1007/s12031-020-01614-8] [PMID: 32535712]
[158]
Dowd, B. Glucose-6-phosphate dehydrogenase and its relationship to mental retardation. Med. Hypotheses, 1980, 6(1), 7-11.
[http://dx.doi.org/10.1016/0306-9877(80)90026-2] [PMID: 7382887]
[159]
Babu, G.N.; Kumar, A.; Chandra, R.; Puri, S.K.; Singh, R.L.; Kalita, J.; Misra, U.K. Oxidant-antioxidant imbalance in the erythrocytes of sporadic amyotrophic lateral sclerosis patients correlates with the progression of disease. Neurochem. Int., 2008, 52(6), 1284-1289.
[http://dx.doi.org/10.1016/j.neuint.2008.01.009] [PMID: 18308427]
[160]
Hayashi, H. Enzymatic analysis of individual posterior root ganglion cells in olivopontocerebellar atrophy, amyotrophic lateral sclerosis and Duchenne muscular dystrophy. J. Neurol. Sci., 1985, 70(1), 13-20.
[http://dx.doi.org/10.1016/0022-510X(85)90183-2] [PMID: 4045497]
[161]
Ferreira, I.L.; Cunha-Oliveira, T.; Nascimento, M.V.; Ribeiro, M.; Proença, M.T.; Januário, C.; Oliveira, C.R.; Rego, A.C. Bioenergetic dysfunction in Huntington’s disease human cybrids. Exp. Neurol., 2011, 231(1), 127-134.
[http://dx.doi.org/10.1016/j.expneurol.2011.05.024] [PMID: 21684277]
[162]
Dunn, L.; Allen, G.F.; Mamais, A.; Ling, H.; Li, A.; Duberley, K.E.; Hargreaves, I.P.; Pope, S.; Holton, J.L.; Lees, A.; Heales, S.J.; Bandopadhyay, R. Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease. Neurobiol. Aging, 2014, 35(5), 1111-1115.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.11.001] [PMID: 24300239]
[163]
Russell, R.L.; Siedlak, S.L.; Raina, A.K.; Bautista, J.M.; Smith, M.A.; Perry, G. Increased neuronal glucose-6-phosphate dehydrogenase and sulfhydryl levels indicate reductive compensation to oxidative stress in Alzheimer disease. Arch. Biochem. Biophys., 1999, 370(2), 236-239.
[http://dx.doi.org/10.1006/abbi.1999.1404] [PMID: 10510282]
[164]
Meloni, T.; Forteleoni, G.; Aiello, I.; Pirastru, M.I.; Sanna, G.; Meloni, G.F.; Rosati, G. Glucose-6-phosphate dehydrogenase deficiency and multiple sclerosis in northern Sardinia. Neuroepidemiology, 1993, 12(6), 350-352.
[http://dx.doi.org/10.1159/000110338] [PMID: 8309511]
[165]
Nasr, S.J. Glucose-6-phosphate dehydrogenase deficiency with psychosis. Arch. Gen. Psychiatry, 1976, 33(10), 1202-1203.
[http://dx.doi.org/10.1001/archpsyc.1976.01770100064006] [PMID: 971029]
[166]
Harbada, R.K.; Sorabjee, J.S.; Surya, N.; Jadhav, K.A.; Mirgh, S. Cerebellar toxoplasmosis in an immunocompetent patient with G6PD deficiency. J. Assoc. Physicians India, 2016, 64(8), 79-82.
[PMID: 27762116]
[167]
Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; Prakash Mishra, A.; Nigam, M.; El Rayess, Y.; Beyrouthy, M.E.; Polito, L.; Iriti, M.; Martins, N.; Martorell, M.; Docea, A.O.; Setzer, W.N.; Calina, D.; Cho, W.C.; Sharifi-Rad, J. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol., 2020, 11, 694.
[http://dx.doi.org/10.3389/fphys.2020.00694] [PMID: 32714204]
[168]
Yang, C-A.; Huang, H-Y.; Lin, C-L.; Chang, J-G. G6PD as a predictive marker for glioma risk, prognosis and chemosensitivity. J. Neurooncol., 2018, 139(3), 661-670.
[http://dx.doi.org/10.1007/s11060-018-2911-8] [PMID: 29845423]
[169]
Jeng, W.; Loniewska, M.M.; Wells, P.G. Brain glucose-6-phosphate dehydrogenase protects against endogenous oxidative DNA damage and neurodegeneration in aged mice. ACS Chem. Neurosci., 2013, 4(7), 1123-1132.
[http://dx.doi.org/10.1021/cn400079y] [PMID: 23672460]
[170]
Niedzielska, E.; Smaga, I.; Gawlik, M.; Moniczewski, A.; Stankowicz, P.; Pera, J.; Filip, M. Oxidative stress in neurodegenerative diseases. Mol. Neurobiol., 2016, 53(6), 4094-4125.
[http://dx.doi.org/10.1007/s12035-015-9337-5] [PMID: 26198567]
[171]
Tu, D.; Gao, Y.; Yang, R.; Guan, T.; Hong, J-S.; Gao, H-M. The pentose phosphate pathway regulates chronic neuroinflammation and dopaminergic neurodegeneration. J. Neuroinflammation, 2019, 16(1), 255.
[http://dx.doi.org/10.1186/s12974-019-1659-1] [PMID: 31805953]
[172]
Tang, B.L. Neuroprotection by glucose-6-phosphate dehydrogenase and the pentose phosphate pathway. J. Cell. Biochem., 2019, 120(9), 14285-14295.
[http://dx.doi.org/10.1002/jcb.29004] [PMID: 31127649]
[173]
Ho, H.Y.; Cheng, M.L.; Chiu, D.T. Glucose-6-phosphate dehydrogenase--from oxidative stress to cellular functions and degenerative diseases. Redox Rep., 2007, 12(3), 109-118.
[http://dx.doi.org/10.1179/135100007X200209] [PMID: 17623517]
[174]
Tiwari, M. Glucose 6 phosphatase dehydrogenase (G6PD) and neurodegenerative disorders: Mapping diagnostic and therapeutic opportunities. Genes Dis., 2017, 4(4), 196-203.
[http://dx.doi.org/10.1016/j.gendis.2017.09.001] [PMID: 30258923]
[175]
Aydemir, D.; Dağlıoğlu, G.; Candevir, A.; Kurtaran, B.; Bozdogan, S.T.; Inal, T.C.; Ulusu, N.N. COVID-19 may enhance risk of thrombosis and hemolysis in the G6PD deficient patients. Nucleosides Nucleotides Nucleic Acids, 2021, 40(5), 505-517.
[http://dx.doi.org/10.1080/15257770.2021.1897457] [PMID: 33719907]
[176]
Abdelhady, M.; Elsotouhy, A.; Vattoth, S. Acute flaccid myelitis in COVID-19. BJR Case Rep., 2020, 6(3), 20200098.
[http://dx.doi.org/10.1259/bjrcr.20200098] [PMID: 32922857]
[177]
Ali, L.; Khan, A.; Elalamy, O.; Canibano, B.; Adeli, G.; Ahmed, I.; Iqrar, A.; Abdussalam, A.; Ibrahim, A.S.; Sardar, S. A rare presentation of acute flaccid myelitis in COVID-19 patient: A case report. Pakistan J. Neurol. Sci., 2020, 15, 22-26.
[178]
Aydemir, D.; Ulusu, N.N. The possible role of the glucose-6-phosphate dehydrogenase enzyme deficiency in the polyneuropathies. J. Basic Clin. Heal. Sci., 2020, 4, 212-217.
[http://dx.doi.org/10.30621/jbachs.2020.1151]
[179]
Nabavi, S.F.; Habtemariam, S.; Sureda, A.; Banach, M.; Berindan-Neagoe, I.; Cismaru, C.A.; Bagheri, M.; Bagheri, M.S.; Nabavi, S.M. Glucose-6-phosphate dehydrogenase deficiency and SARS-CoV-2 mortality: Is there a link and what should we do? Clin. Biochem., 2020, 86, 31-33.
[http://dx.doi.org/10.1016/j.clinbiochem.2020.09.004] [PMID: 32950470]
[180]
U. S. National Library of Medicine. Available from: https://www.clinicaltrials.gov/ (accessed September 16, 2021).
[181]
Georgakouli, K.; Deli, C.K.; Zalavras, A.; Fatouros, I.G.; Kouretas, D.; Koutedakis, Y.; Jamurtas, A.Z. A-lipoic acid supplementation up-regulates antioxidant capacity in adults with G6PD deficiency. Food Chem. Toxicol. an Int. J. Publ. Br. Ind. Biol. Res. Assoc., 2013, 61, 69-73.
[PMID: 23416142]
[182]
Sultana, N.; Begum, N.; Akhter, S.; Begum, S.; Quraishi, S.B.; Ferdousi, S.; Ali, T. Role of vitamin E supplementation on serum levels of copper and zinc in hemolytic anemic patients with G6PD deficiency. Mymensingh Med. J., 2008, 17(2)(Suppl.), S84-S90.
[PMID: 18946458]
[183]
Ohanube, G.A.K.; Ikeagwulonu, R.C.; Obeta, U.; Okoro, S.C. The use of vitamin C for prophylaxis and management of COVID-19 in G6PD Deficiency; A case report in Nigeria. J. Curr. Biomed. Res., 2021, 1, 1-6.
[184]
Michienzi, S.M.; Badowski, M.E. Can vitamins and/or supplements provide hope against coronavirus? Drugs Context, 2020, 9, 9.
[http://dx.doi.org/10.7573/dic.2020-5-7] [PMID: 32636919]
[185]
Khanahmad, N.; Khanahmad, H.; Shariati, L.; Rahimmanesh, I.; Kouhpayeh, S. The possible role of glucose-6-phosphate dehydrogenase deficiency in COVID-19 global prevalence and distribution. J. Res. Med. Sci., 2020, 25(1), 92.
[http://dx.doi.org/10.4103/jrms.JRMS_322_20] [PMID: 33273937]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy