Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Natural Products: A Potential New Hope to Defeat Post-acute Sequelae of COVID-19

Author(s): Shuang Zhao, Aliya Abdurehim, Yu Yuan, Tan Yang, Chao Li, Yanqing Zhang*, Yaxin Li*, Xiuyan Sun and Junbo Xie*

Volume 23, Issue 26, 2023

Published on: 20 September, 2023

Page: [2436 - 2451] Pages: 16

DOI: 10.2174/1568026623666230829164156

Price: $65

Abstract

The COVID-19 pandemic was the most significant public healthcare crisis worldwide. It was estimated that 80% of infected patients with COVID-19 have not fully recovered and developed one or more long-term symptoms, referred to as post-acute sequelae of COVID-19 (PASC). Seeking a treatment strategy for PASC has become a concerning topic since the sequelae can cause irreversible multiple organ damage and can severely compromise quality of life. It is indicated that PASC may be closely related to lung injury-induced hypoxia, excessive immune response, cytokine storm, gut bacteria imbalance, and endothelial dysfunction. Also, more and more research has indicated that angiotensin-converting enzyme 2 (ACE2) receptor, transient receptor potential ankyrin 1 and vanillin 1 (TRPA1/V1), and nuclear factor erythroid 2-related factor 2 (Nrf2) can be considered as the targets to treat PASC. There is currently still no proven medication for PASC due to its complexity. Many clinical practices and studies have shown that natural products have great potential in preventing and treating PASC. Therefore, we intended to provide a comprehensive review of the current literature on PASC and the role of natural ingredients in PASC management. Meanwhile, this review provided meaningful insight for further study of natural ingredients to improve PASC and its clinical application.

Keywords: Natural ingredients, Post-acute sequelae of COVID-19, ACE2; Nrf2, TRPA1, TRPV1.

Graphical Abstract
[1]
World health organization. Coronavirus disease (COVID 19) weekly 271 epidemiological update and monthly operational updates. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports ((Accessed on: June 2 7, 2023).
[2]
Wang, H.; Paulson, K.R.; Pease, S.A.; Watson, S.; Comfort, H.; Zheng, P.; Aravkin, A.Y.; Bisignano, C.; Barber, R.M.; Alam, T.; Fuller, J.E.; May, E.A.; Jones, D.P.; Frisch, M.E.; Abbafati, C.; Adolph, C.; Allorant, A.; Amlag, J.O.; Bang-Jensen, B.; Bertolacci, G.J.; Bloom, S.S.; Carter, A.; Castro, E.; Chakrabarti, S.; Chattopadhyay, J.; Cogen, R.M.; Collins, J.K.; Cooperrider, K.; Dai, X.; Dangel, W.J.; Daoud, F.; Dapper, C.; Deen, A.; Duncan, B.B.; Erickson, M.; Ewald, S.B.; Fedosseeva, T.; Ferrari, A.J.; Frostad, J.J.; Fullman, N.; Gallagher, J.; Gamkrelidze, A.; Guo, G.; He, J.; Helak, M.; Henry, N.J.; Hulland, E.N.; Huntley, B.M.; Kereselidze, M.; Lazzar-Atwood, A.; LeGrand, K.E.; Lindstrom, A.; Linebarger, E.; Lotufo, P.A.; Lozano, R.; Magistro, B.; Malta, D.C.; Månsson, J.; Mantilla Herrera, A.M.; Marinho, F.; Mirkuzie, A.H.; Misganaw, A.T.; Monasta, L.; Naik, P.; Nomura, S.; O’Brien, E.G.; O’Halloran, J.K.; Olana, L.T.; Ostroff, S.M.; Penberthy, L.; Reiner, R.C., Jr; Reinke, G.; Ribeiro, A.L.P.; Santomauro, D.F.; Schmidt, M.I.; Shaw, D.H.; Sheena, B.S.; Sholokhov, A.; Skhvitaridze, N.; Sorensen, R.J.D.; Spurlock, E.E.; Syailendrawati, R.; Topor-Madry, R.; Troeger, C.E.; Walcott, R.; Walker, A.; Wiysonge, C.S.; Worku, N.A.; Zigler, B.; Pigott, D.M.; Naghavi, M.; Mokdad, A.H.; Lim, S.S.; Hay, S.I.; Gakidou, E.; Murray, C.J.L. Estimating excess mortality due to the COVID-19 pandemic: A systematic analysis of COVID-19-related mortality, 2020–21. Lancet, 2022, 399(10334), 1513-1536.
[http://dx.doi.org/10.1016/S0140-6736(21)02796-3] [PMID: 35279232]
[3]
Raman, B.; Bluemke, D.A.; Lüscher, T.F.; Neubauer, S. Long COVID: Post-acute sequelae of COVID-19 with a cardiovascular focus. Eur. Heart J., 2022, 43(11), 1157-1172.
[http://dx.doi.org/10.1093/eurheartj/ehac031] [PMID: 35176758]
[4]
Choutka, J.; Jansari, V.; Hornig, M.; Iwasaki, A. Unexplained post-acute infection syndromes. Nat. Med., 2022, 28(5), 911-923.
[http://dx.doi.org/10.1038/s41591-022-01810-6] [PMID: 35585196]
[5]
Nolen, L.T.; Mukerji, S.S.; Mejia, N.I. Post-acute neurological consequences of COVID-19: An unequal burden. Nat. Med., 2022, 28(1), 20-23.
[http://dx.doi.org/10.1038/s41591-021-01647-5] [PMID: 35039657]
[6]
Satterfield, B.A.; Bhatt, D.L.; Gersh, B.J. Cardiac involvement in the long-term implications of COVID-19. Nat. Rev. Cardiol., 2022, 19(5), 332-341.
[http://dx.doi.org/10.1038/s41569-021-00631-3] [PMID: 34686843]
[7]
Al-Aly, Z.; Bowe, B.; Xie, Y. Long COVID after breakthrough SARS-CoV-2 infection. Nat. Med., 2022, 28(7), 1461-1467.
[http://dx.doi.org/10.1038/s41591-022-01840-0] [PMID: 35614233]
[8]
Schmidt, C. COVID-19 long haulers. Nat. Biotechnol., 2021, 39(8), 908-913.
[http://dx.doi.org/10.1038/s41587-021-00984-7] [PMID: 34257426]
[9]
Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; Ahluwalia, N.; Bikdeli, B.; Dietz, D.; Der-Nigoghossian, C.; Liyanage-Don, N.; Rosner, G.F.; Bernstein, E.J.; Mohan, S.; Beckley, A.A.; Seres, D.S.; Choueiri, T.K.; Uriel, N.; Ausiello, J.C.; Accili, D.; Freedberg, D.E.; Baldwin, M.; Schwartz, A.; Brodie, D.; Garcia, C.K.; Elkind, M.S.V.; Connors, J.M.; Bilezikian, J.P.; Landry, D.W.; Wan, E.Y. Post-acute COVID-19 syndrome. Nat. Med., 2021, 27(4), 601-615.
[http://dx.doi.org/10.1038/s41591-021-01283-z] [PMID: 33753937]
[10]
Lopez-Leon, S.; Wegman-Ostrosky, T.; Perelman, C.; Sepulveda, R.; Rebolledo, P.A.; Cuapio, A.; Villapol, S. More than 50 long-term effects of COVID-19: A systematic review and meta-analysis. Sci. Rep., 2021, 11(1), 16144.
[http://dx.doi.org/10.1038/s41598-021-95565-8] [PMID: 34373540]
[11]
Liu, D.; Zeng, X.; Ding, Z.; Lv, F.; Mehta, J.L.; Wang, X. Adverse cardiovascular effects of anti-COVID-19 drugs. Front. Pharmacol., 2021, 12, 699949.
[http://dx.doi.org/10.3389/fphar.2021.699949] [PMID: 34512335]
[12]
Pawlos, A.; Niedzielski, M. Gorzelak-Pabiś P.; Broncel, M.; Woźniak, E. COVID-19: Direct and indirect mechanisms of statins. Int. J. Mol. Sci., 2021, 22(8), 4177.
[http://dx.doi.org/10.3390/ijms22084177] [PMID: 33920709]
[13]
Kwok, M.; Lee, C.; Li, H.S.; Deng, R.; Tsoi, C.; Ding, Q.; Tsang, S.Y.; Leung, K.T.; Yan, B.P.; Poon, E.N. Remdesivir induces persistent mitochondrial and structural damage in human induced pluripotent stem cell-derived cardiomyocytes. Cardiovasc. Res., 2022, 118(12), 2652-2664.
[http://dx.doi.org/10.1093/cvr/cvab311] [PMID: 34609482]
[14]
Doyno, C.; Sobieraj, D.M.; Baker, W.L. Toxicity of chloroquine and hydroxychloroquine following therapeutic use or overdose. Clin. Toxicol., 2021, 59(1), 12-23.
[http://dx.doi.org/10.1080/15563650.2020.1817479] [PMID: 32960100]
[15]
Lee, D.Y.W.; Li, Q.Y.; Liu, J.; Efferth, T. Traditional Chinese herbal medicine at the forefront battle against COVID-19: Clinical experience and scientific basis. Phytomedicine, 2021, 80, 153337.
[http://dx.doi.org/10.1016/j.phymed.2020.153337] [PMID: 33221457]
[16]
WHO expert meeting on evaluation of traditional chinese medicine in the treatment of COVID-19. Available at: https://www.who.int/publications/m/item/who-expert-meeting-on-evaluation-of-traditional-chinese-medicine-in-the-treatment-of-covid-19 ((Accessed on: February 23, 2023).
[17]
Theoharides, T.C.; Cholevas, C.; Polyzoidis, K.; Politis, A. Long‐COVID syndrome‐associated brain fog and chemofog: Luteolin to the rescue. Biofactors, 2021, 47(2), 232-241.
[http://dx.doi.org/10.1002/biof.1726] [PMID: 33847020]
[18]
Gu, Y.Y.; Zhang, M.; Cen, H.; Wu, Y.F.; Lu, Z.; Lu, F.; Liu, X.S.; Lan, H.Y. Quercetin as a potential treatment for COVID-19-induced acute kidney injury: Based on network pharmacology and molecular docking study. PLoS One, 2021, 16(1), e0245209.
[http://dx.doi.org/10.1371/journal.pone.0245209] [PMID: 33444408]
[19]
Gligorijević, N.; Stanić-Vučinić, D.; Radomirović, M.; Stojadinović, M.; Khulal, U.; Nedić, O.; Ćirković Veličković, T. Role of resveratrol in prevention and control of cardiovascular disorders and cardiovascular complications related to COVID-19 disease: Mode of action and approaches explored to increase its bioavailability. Molecules, 2021, 26(10), 2834.
[http://dx.doi.org/10.3390/molecules26102834] [PMID: 34064568]
[20]
Giordo, R.; Zinellu, A.; Eid, A.H.; Pintus, G. Therapeutic potential of resveratrol in COVID-19-Associated hemostatic disorders. Molecules, 2021, 26(4), 856.
[http://dx.doi.org/10.3390/molecules26040856] [PMID: 33562030]
[21]
Diniz, L.R.L.; Souza, M.T.S.; Duarte, A.B.S.; Sousa, D.P. Mechanistic aspects and therapeutic potential of quercetin against COVID-19-Associated acute kidney injury. Molecules, 2020, 25(23), 5772.
[http://dx.doi.org/10.3390/molecules25235772] [PMID: 33297540]
[22]
Diniz, L.R.L.; Elshabrawy, H.A.; Souza, M.T.S.; Duarte, A.B.S.; Datta, S.; de Sousa, D.P. Catechins: Therapeutic perspectives in COVID-19-Associated acute kidney injury. Molecules, 2021, 26(19), 5951.
[http://dx.doi.org/10.3390/molecules26195951] [PMID: 34641495]
[23]
Anton-Vazquez, V.; Byrne, L.; Anderson, L.; Hamzah, L. COVID-19 cardiac injury and the use of colchicine. BMJ Case Rep., 2021, 14(2), e241047.
[http://dx.doi.org/10.1136/bcr-2020-241047] [PMID: 33622757]
[24]
Rabbani, A.B.; Parikh, R.V.; Rafique, A.M. Colchicine for the treatment of myocardial injury in patients with coronavirus disease 2019 (COVID-19)—an old drug with new life? JAMA Netw. Open, 2020, 3(6), e2013556.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.13556] [PMID: 32579190]
[25]
Townsend, L.; Dyer, A.H.; Jones, K.; Dunne, J.; Mooney, A.; Gaffney, F.; O’Connor, L.; Leavy, D.; O’Brien, K.; Dowds, J.; Sugrue, J.A.; Hopkins, D.; Martin-Loeches, I.; Ni Cheallaigh, C.; Nadarajan, P.; McLaughlin, A.M.; Bourke, N.M.; Bergin, C.; O’Farrelly, C.; Bannan, C.; Conlon, N. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS One, 2020, 15(11), e0240784.
[http://dx.doi.org/10.1371/journal.pone.0240784] [PMID: 33166287]
[26]
Prescott, H.C.; Iwashyna, T.J.; Blackwood, B.; Calandra, T.; Chlan, L.L.; Choong, K.; Connolly, B.; Dark, P.; Ferrucci, L.; Finfer, S.; Girard, T.D.; Hodgson, C.; Hopkins, R.O.; Hough, C.L.; Jackson, J.C.; Machado, F.R.; Marshall, J.C.; Misak, C.; Needham, D.M.; Panigrahi, P.; Reinhart, K.; Yende, S.; Zafonte, R.; Rowan, K.M.; Angus, D.C. Understanding and enhancing sepsis survivorship. priorities for research and practice. Am. J. Respir. Crit. Care Med., 2019, 200(8), 972-981.
[http://dx.doi.org/10.1164/rccm.201812-2383CP] [PMID: 31161771]
[27]
Berry, C.; Mangion, K. Multisystem involvement is common in post-COVID-19 syndrome. Nat. Med., 2022, 28(6), 1139-1140.
[http://dx.doi.org/10.1038/s41591-022-01838-8] [PMID: 35606552]
[28]
Chary, M.; Barbuto, A.F.; Izadmehr, S.; Tarsillo, M.; Fleischer, E.; Burns, M.M. COVID-19 therapeutics: Use, mechanism of action, and toxicity (Vaccines, Monoclonal Antibodies, and Immunotherapeutics). J. Med. Toxicol., 2023, 19(2), 205-218.
[http://dx.doi.org/10.1007/s13181-023-00931-9] [PMID: 36862334]
[29]
Liskova, A.; Koklesova, L.; Samec, M.; Abdellatif, B.; Zhai, K.; Siddiqui, M.; Šudomová, M.; Hassan, S.T.S.; Kudela, E.; Biringer, K.; Giordano, F.A.; Büsselberg, D.; Golubnitschaja, O.; Kubatka, P. Targeting phytoprotection in the COVID-19-induced lung damage and associated systemic effects-the evidence-based 3PM proposition to mitigate individual risks. EPMA J., 2021, 12(3), 325-347.
[http://dx.doi.org/10.1007/s13167-021-00249-y] [PMID: 34367380]
[30]
Sims, J.T.; Krishnan, V.; Chang, C.Y.; Engle, S.M.; Casalini, G.; Rodgers, G.H.; Bivi, N.; Nickoloff, B.J.; Konrad, R.J.; de Bono, S.; Higgs, R.E.; Benschop, R.J.; Ottaviani, S.; Cardoso, A.; Nirula, A.; Corbellino, M.; Stebbing, J. Characterization of the cytokine storm reflects hyperinflammatory endothelial dysfunction in COVID-19. J. Allergy Clin. Immunol., 2021, 147(1), 107-111.
[http://dx.doi.org/10.1016/j.jaci.2020.08.031] [PMID: 32920092]
[31]
Kazakou, P.; Lambadiari, V.; Ikonomidis, I.; Kountouri, A.; Panagopoulos, G.; Athanasopoulos, S.; Korompoki, E.; Kalomenidis, I.; Dimopoulos, M.A.; Mitrakou, A. Diabetes and COVID-19; A bidirectional interplay. Front. Endocrinol., 2022, 13, 780663.
[http://dx.doi.org/10.3389/fendo.2022.780663] [PMID: 35250853]
[32]
Libby, P.; Lüscher, T. COVID-19 is, in the end, an endothelial disease. Eur. Heart J., 2020, 41(32), 3038-3044.
[http://dx.doi.org/10.1093/eurheartj/ehaa623] [PMID: 32882706]
[33]
Daher, J. Endothelial dysfunction and COVID 19 (Review). Biomed. Rep., 2021, 15(6), 102.
[http://dx.doi.org/10.3892/br.2021.1478] [PMID: 34667599]
[34]
Wu, B.; Song, H.; Fan, M.; You, F.; Zhang, L.; Luo, J.; Li, J.; Wang, L.; Li, C.; Yuan, M. Luteolin attenuates sepsis induced myocardial injury by enhancing autophagy in mice. Int. J. Mol. Med., 2020, 45(5), 1477-1487.
[http://dx.doi.org/10.3892/ijmm.2020.4536] [PMID: 32323750]
[35]
Hou, Y.; Li, J.; Ding, Y.; Cui, Y.; Nie, H. Luteolin attenuates lipopolysaccharide-induced acute lung injury/acute respiratory distress syndrome by activating alveolar epithelial sodium channels via cGMP/PI3K pathway. J. Ethnopharmacol., 2022, 282, 114654.
[http://dx.doi.org/10.1016/j.jep.2021.114654] [PMID: 34537283]
[36]
Liu, M.; Cheng, C.; Li, X.; Zhou, S.; Hua, J.; Huang, J.; Li, Y.; Yang, K.; Zhang, P.; Zhang, Y.; Tian, J. Luteolin alleviates ochratoxin a induced oxidative stress by regulating Nrf2 and HIF-1α pathways in NRK-52E rat kidney cells. Food Chem. Toxicol., 2020, 141, 111436.
[http://dx.doi.org/10.1016/j.fct.2020.111436] [PMID: 32439592]
[37]
Tan, X.; Yang, Y.; Xu, J.; Zhang, P.; Deng, R.; Mao, Y.; He, J.; Chen, Y.; Zhang, Y.; Ding, J.; Li, H.; Shen, H.; Li, X.; Dong, W.; Chen, G. Luteolin exerts neuroprotection via modulation of the p62/Keap1/Nrf2 pathway in intracerebral hemorrhage. Front. Pharmacol., 2020, 10, 1551.
[http://dx.doi.org/10.3389/fphar.2019.01551] [PMID: 32038239]
[38]
Han, X.; Xu, T.; Fang, Q.; Zhang, H.; Yue, L.; Hu, G.; Sun, L. Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy. Redox Biol., 2021, 44, 102010.
[http://dx.doi.org/10.1016/j.redox.2021.102010] [PMID: 34082381]
[39]
Wei, X.; Meng, X.; Yuan, Y.; Shen, F.; Li, C.; Yang, J. Quercetin exerts cardiovascular protective effects in LPS-induced dysfunction in vivo by regulating inflammatory cytokine expression, NF-κB phosphorylation, and caspase activity. Mol. Cell. Biochem., 2018, 446(1-2), 43-52.
[http://dx.doi.org/10.1007/s11010-018-3271-6] [PMID: 29322353]
[40]
Sul, O.J.; Ra, S.W. Quercetin Prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ROS/NF-kB in lung epithelial cells. Molecules, 2021, 26(22), 6949.
[http://dx.doi.org/10.3390/molecules26226949] [PMID: 34834040]
[41]
Yang, C.C.; Wu, C.J.; Chien, C.Y.; Chien, C.T. Green tea polyphenol catechins inhibit coronavirus replication and potentiate the adaptive immunity and autophagy-dependent protective mechanism to improve acute lung injury in Mice. Antioxidants, 2021, 10(6), 928.
[http://dx.doi.org/10.3390/antiox10060928] [PMID: 34200327]
[42]
Song, J.; Zhang, L.; Xu, Y.; Yang, D.; Zhang, L.; Yang, S.; Zhang, W.; Wang, J.; Tian, S.; Yang, S.; Yuan, T.; Liu, A.; Lv, Q.; Li, F.; Liu, H.; Hou, B.; Peng, X.; Lu, Y.; Du, G. The comprehensive study on the therapeutic effects of baicalein for the treatment of COVID-19 in vivo and in vitro. Biochem. Pharmacol., 2021, 183, 114302.
[http://dx.doi.org/10.1016/j.bcp.2020.114302] [PMID: 33121927]
[43]
Jia, L.; Sun, P.; Gao, H.; Shen, J.; Gao, Y.; Meng, C.; Fu, S.; Yao, H.; Zhang, G. Mangiferin attenuates bleomycin-induced pulmonary fibrosis in mice through inhibiting TLR4/p65 and TGF-β1/Smad2/3 pathway. J. Pharm. Pharmacol., 2019, 71(6), 1017-1028.
[http://dx.doi.org/10.1111/jphp.13077] [PMID: 30847938]
[44]
Song, J.; Meng, Y.; Wang, M.; Li, L.; Liu, Z.; Zheng, K.; Wu, L.; Liu, B.; Hou, F.; Li, A. Mangiferin activates Nrf2 to attenuate cardiac fibrosis via redistributing glutaminolysis-derived glutamate. Pharmacol. Res., 2020, 157, 104845.
[http://dx.doi.org/10.1016/j.phrs.2020.104845] [PMID: 32353588]
[45]
Lei, L.Y.; Wang, R.C.; Pan, Y.L.; Yue, Z.G.; Zhou, R.; Xie, P.; Tang, Z.S. Mangiferin inhibited neuroinflammation through regulating microglial polarization and suppressing NF-κB, NLRP3 pathway. Chin. J. Nat. Med., 2021, 19(2), 112-119.
[http://dx.doi.org/10.1016/S1875-5364(21)60012-2] [PMID: 33641782]
[46]
Li, S.; Jin, S.; Chen, W.; Yu, J.; Fang, P.; Zhou, G.; Li, J.; Jin, L.; Chen, Y.; Chen, P.; Pan, C. Mangiferin alleviates endoplasmic reticulum stress in acute liver injury by regulating the miR-20a/miR-101a-Nrf2 axis. J. Biochem., 2020, 168(4), 365-374.
[http://dx.doi.org/10.1093/jb/mvaa056] [PMID: 32413114]
[47]
Xie, H.; Chen, Y.; Du, K.; Wu, W.; Feng, X. Puerarin alleviates vincristine-induced neuropathic pain and neuroinflammation via inhibition of nuclear factor-κB and activation of the TGF-β/Smad pathway in rats. Int. Immunopharmacol., 2020, 89, 107060.
[http://dx.doi.org/10.1016/j.intimp.2020.107060]
[48]
Yang, J.; Wu, M.; Fang, H.; Su, Y.; Zhang, L.; Zhou, H. Puerarin prevents acute liver injury via inhibiting inflammatory responses and ZEB2 expression. Front. Pharmacol., 2021, 12, 727916.
[http://dx.doi.org/10.3389/fphar.2021.727916] [PMID: 34421621]
[49]
Wu, Y.; Li, J.; Ding, W.; Ruan, Z.; Zhang, L. Enhanced intestinal barriers by puerarin in combination with tryptophan. J. Agric. Food Chem., 2021, 69(51), 15575-15584.
[http://dx.doi.org/10.1021/acs.jafc.1c05830] [PMID: 34928145]
[50]
Feng, H.; Cao, J.; Zhang, G.; Wang, Y. Kaempferol attenuates cardiac hypertrophy via regulation of ask1/mapk signaling pathway and oxidative stress. Planta Med., 2017, 83(10), 837-845.
[http://dx.doi.org/10.1055/s-0043-103415] [PMID: 28219095]
[51]
BinMowyna, M.N.; AlFaris, N.A. Kaempferol suppresses acetaminophen-induced liver damage by upregulation/activation of SIRT1. Pharm. Biol., 2021, 59(1), 144-154.
[http://dx.doi.org/10.1080/13880209.2021.1877734] [PMID: 33556299]
[52]
Yuan, P.; Sun, X.; Liu, X.; Hutterer, G.; Pummer, K.; Hager, B.; Ye, Z.; Chen, Z. Kaempferol alleviates calcium oxalate crystal-induced renal injury and crystal deposition via regulation of the AR/NOX2 signaling pathway. Phytomedicine, 2021, 86, 153555.
[http://dx.doi.org/10.1016/j.phymed.2021.153555] [PMID: 33852977]
[53]
Lee, E.H.; Park, K.I.; Kim, K.Y.; Lee, J.H.; Jang, E.J.; Ku, S.K.; Kim, S.C.; Suk, H.Y.; Park, J.Y.; Baek, S.Y.; Kim, Y.W. Liquiritigenin inhibits hepatic fibrogenesis and TGF-β1/Smad with Hippo/YAP signal. Phytomedicine, 2019, 62, 152780.
[http://dx.doi.org/10.1016/j.phymed.2018.12.003] [PMID: 31121384]
[54]
Ko, Y.H.; Kwon, S.H.; Lee, S.Y.; Jang, C.G. Liquiritigenin ameliorates memory and cognitive impairment through cholinergic and BDNF pathways in the mouse hippocampus. Arch. Pharm. Res., 2017, 40(10), 1209-1217.
[http://dx.doi.org/10.1007/s12272-017-0954-6] [PMID: 28940173]
[55]
Xu, Z.; Hu, Z.; Xu, H.; Zhang, L.; Li, L.; Wang, Y.; Zhu, Y.; Yang, L.; Hu, D. Liquiritigenin alleviates doxorubicin-induced chronic heart failure via promoting ARHGAP18 and suppressing RhoA/ROCK1 pathway. Exp. Cell Res., 2022, 411(2), 113008.
[http://dx.doi.org/10.1016/j.yexcr.2022.113008] [PMID: 34990617]
[56]
Dupuis, J.; Sirois, M.G.; Rhéaume, E.; Nguyen, Q.T.; Clavet-Lanthier, M.É.; Brand, G.; Mihalache-Avram, T.; Théberge-Julien, G.; Charpentier, D.; Rhainds, D.; Neagoe, P.E.; Tardif, J.C. Colchicine reduces lung injury in experimental acute respiratory distress syndrome. PLoS One, 2020, 15(12), e0242318.
[http://dx.doi.org/10.1371/journal.pone.0242318] [PMID: 33264297]
[57]
Wang, Y.; Zhou, X.; Zhao, D.; Wang, X.; Gurley, E.C.; Liu, R.; Li, X.; Hylemon, P.B.; Chen, W.; Zhou, H. Berberine inhibits free fatty acid and LPS-induced inflammation via modulating ER stress response in macrophages and hepatocytes. PLoS One, 2020, 15(5), e0232630.
[http://dx.doi.org/10.1371/journal.pone.0232630] [PMID: 32357187]
[58]
Shaker, F.H.; El-Derany, M.O.; Wahdan, S.A.; El-Demerdash, E.; El-Mesallamy, H.O. Berberine ameliorates doxorubicin-induced cognitive impairment (chemobrain) in rats. Life Sci., 2021, 269, 119078.
[http://dx.doi.org/10.1016/j.lfs.2021.119078] [PMID: 33460662]
[59]
Chen, H.; Liu, Q.; Liu, X.; Jin, J. Berberine attenuates septic cardiomyopathy by inhibiting TLR4/NF-κB signalling in rats. Pharm. Biol., 2021, 59(1), 119-126.
[http://dx.doi.org/10.1080/13880209.2021.1877736] [PMID: 33539718]
[60]
Cui, H.; Cai, Y.; Wang, L.; Jia, B.; Li, J.; Zhao, S.; Chu, X.; Lin, J.; Zhang, X.; Bian, Y.; Zhuang, P. Berberine regulates treg/Th17 balance to treat Ulcerative colitis through modulating the gut microbiota in the Colon. Front. Pharmacol., 2018, 9, 571.
[http://dx.doi.org/10.3389/fphar.2018.00571] [PMID: 29904348]
[61]
Niu, X.; Fan, T.; Li, W.; Huang, H.; Zhang, Y.; Xing, W. Protective effect of sanguinarine against acetic acid-induced ulcerative colitis in mice. Toxicol. Appl. Pharmacol., 2013, 267(3), 256-265.
[http://dx.doi.org/10.1016/j.taap.2013.01.009] [PMID: 23352506]
[62]
Yu, C.; Li, P.; Wang, Y.X.; Zhang, K.G.; Zheng, Z.C.; Liang, L.S. Sanguinarine attenuates neuropathic pain by inhibiting p38 mapk activated neuroinflammation in rat model. Drug Des. Devel. Ther., 2020, 14, 4725-4733.
[http://dx.doi.org/10.2147/DDDT.S276424] [PMID: 33177809]
[63]
Kim, J.Y.; Hong, H.L.; Kim, G.M.; Leem, J.; Kwon, H.H. Protective effects of carnosic acid on lipopolysaccharide-induced acute kidney injury in Mice. Molecules, 2021, 26(24), 7589.
[http://dx.doi.org/10.3390/molecules26247589] [PMID: 34946671]
[64]
Li, Q.; Liu, L.; Sun, H.; Cao, K. Carnosic acid protects against lipopolysaccharide induced acute lung injury in mice. Exp. Ther. Med., 2019, 18(5), 3707-3714.
[http://dx.doi.org/10.3892/etm.2019.8042] [PMID: 31611929]
[65]
Wang, X.; Tang, Y.; Zeng, G.; Wu, L.; Zhou, Y.; Cheng, Z.; Jiang, D.J. Carnosic acid alleviates depression-like behaviors on chronic mild stressed mice via PPAR-γ-dependent regulation of ADPN/FGF9 pathway. Psychopharmacology, 2021, 238(2), 501-516.
[http://dx.doi.org/10.1007/s00213-020-05699-2] [PMID: 33161473]
[66]
Yang, N.; Xia, Z.; Shao, N.; Li, B.; Xue, L.; Peng, Y.; Zhi, F.; Yang, Y. Carnosic acid prevents dextran sulfate sodium-induced acute colitis associated with the regulation of the Keap1/Nrf2 pathway. Sci. Rep., 2017, 7(1), 11036.
[http://dx.doi.org/10.1038/s41598-017-11408-5] [PMID: 28887507]
[67]
Das, S.; Joardar, S.; Manna, P.; Dua, T.K.; Bhattacharjee, N.; Khanra, R.; Bhowmick, S.; Kalita, J.; Saha, A.; Ray, S.; De Feo, V.; Dewanjee, S. Carnosic acid, a natural diterpene, attenuates arsenic-induced hepatotoxicity via reducing oxidative stress, mapk activation, and apoptotic cell death pathway. Oxid. Med. Cell. Longev., 2018, 2018, 1-24.
[http://dx.doi.org/10.1155/2018/1421438] [PMID: 29854073]
[68]
Chen, X.; Wan, Y.; Zhou, T.; Li, J.; Wei, Y. Ursolic acid attenuates lipopolysaccharide-induced acute lung injury in a mouse model. Immunotherapy, 2013, 5(1), 39-47.
[http://dx.doi.org/10.2217/imt.12.144] [PMID: 23256797]
[69]
Gan, D.; Zhang, W.; Huang, C.; Chen, J.; He, W.; Wang, A.; Li, B.; Zhu, X. Ursolic acid ameliorates CCl4‐induced liver fibrosis through the NOXs/ROS pathway. J. Cell. Physiol., 2018, 233(10), 6799-6813.
[http://dx.doi.org/10.1002/jcp.26541] [PMID: 29672850]
[70]
Kanojia, U.; Chaturbhuj, S.G.; Sankhe, R.; Das, M.; Surubhotla, R.; Krishnadas, N.; Gourishetti, K.; Nayak, P.G.; Kishore, A. Beta-caryophyllene, a CB2R selective agonist, protects against cognitive impairment caused by neuro-inflammation and not in dementia due to ageing induced by mitochondrial dysfunction. CNS Neurol. Disord. Drug Targets, 2021, 20(10), 963-974.
[http://dx.doi.org/10.2174/1871527320666210202121103] [PMID: 33530917]
[71]
Zhang, Y.; Zhang, H.; Li, Y.; Wang, M.; Qian, F. β-Caryophyllene attenuates lipopolysaccharide-induced acute lung injury via inhibition of the MAPK signalling pathway. J. Pharm. Pharmacol., 2021, 73(10), 1319-1329.
[http://dx.doi.org/10.1093/jpp/rgab074] [PMID: 34313776]
[72]
Gao, W.; Guo, Y.; Yang, H. Platycodin D protects against cigarette smoke-induced lung inflammation in mice. Int. Immunopharmacol., 2017, 47, 53-58.
[http://dx.doi.org/10.1016/j.intimp.2017.03.009] [PMID: 28363109]
[73]
Guo, R.; Meng, Q.; Wang, B.; Li, F. Anti-inflammatory effects of Platycodin D on dextran sulfate sodium (DSS) induced colitis and E. coli Lipopolysaccharide (LPS) induced inflammation. Int. Immunopharmacol., 2021, 94, 107474.
[http://dx.doi.org/10.1016/j.intimp.2021.107474] [PMID: 33611056]
[74]
Zhang, W.; Hou, J.; Yan, X.; Leng, J.; Li, R.; Zhang, J.; Xing, J.; Chen, C.; Wang, Z.; Li, W. Platycodon grandiflorum saponins ameliorate cisplatin-induced acute nephrotoxicity through the NF-κB-mediated inflammation and PI3K/Akt/apoptosis signaling pathways. Nutrients, 2018, 10(9), 1328.
[http://dx.doi.org/10.3390/nu10091328] [PMID: 30235825]
[75]
Li, W.; Liu, Y.; Wang, Z.; Han, Y.; Tian, Y.H.; Zhang, G.S.; Sun, Y.S.; Wang, Y.P. Platycodin D isolated from the aerial parts of Platycodon grandiflorum protects alcohol-induced liver injury in mice. Food Funct., 2015, 6(5), 1418-1427.
[http://dx.doi.org/10.1039/C5FO00094G] [PMID: 25927324]
[76]
Leng, J.; Wang, Z.; Fu, C.; Zhang, J.; Ren, S.; Hu, J.; Jiang, S.; Wang, Y.; Chen, C.; Li, W. NF-κB and AMPK/PI3K/Akt signaling pathways are involved in the protective effects of Platycodon grandiflorum saponins against acetaminophen-induced acute hepatotoxicity in mice. Phytother. Res., 2018, 32(11), 2235-2246.
[http://dx.doi.org/10.1002/ptr.6160] [PMID: 30039882]
[77]
Li, X.; Wang, T.; Zhang, D.; Li, H.; Shen, H.; Ding, X.; Chen, G. Andrographolide ameliorates intracerebral hemorrhage induced secondary brain injury by inhibiting neuroinflammation induction. Neuropharmacology, 2018, 141, 305-315.
[http://dx.doi.org/10.1016/j.neuropharm.2018.09.015] [PMID: 30218674]
[78]
Ding, Y.; Chen, L.; Wu, W.; Yang, J.; Yang, Z.; Liu, S. Andrographolide inhibits influenza A virus-induced inflammation in a murine model through NF-κB and JAK-STAT signaling pathway. Microbes Infect., 2017, 19(12), 605-615.
[http://dx.doi.org/10.1016/j.micinf.2017.08.009] [PMID: 28889969]
[79]
Lin, L.; Li, R.; Cai, M.; Huang, J.; Huang, W.; Guo, Y.; Yang, L.; Yang, G.; Lan, T.; Zhu, K. Andrographolide ameliorates liver fibrosis in mice: Involvement of TLR4/NF- κ B and TGF- β 1/Smad2 signaling pathways. Oxid. Med. Cell. Longev., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/7808656] [PMID: 29743985]
[80]
Wang, Y.; Wei, B.; Wang, D.; Wu, J.; Gao, J.; Zhong, H.; Sun, Y.; Xu, Q.; Liu, W.; Gu, Y.; Guo, W. DNA damage repair promotion in colonic epithelial cells by andrographolide downregulated cGAS‒STING pathway activation and contributed to the relief of CPT-11-induced intestinal mucositis. Acta Pharm. Sin. B, 2022, 12(1), 262-273.
[http://dx.doi.org/10.1016/j.apsb.2021.03.043] [PMID: 35127384]
[81]
Zhao, Y.; Wang, M.; Li, Y.; Dong, W. Andrographolide attenuates viral myocarditis through interactions with the IL 10/STAT3 and P13K/AKT/NF κβ signaling pathways. Exp. Ther. Med., 2018, 16(3), 2138-2143.
[http://dx.doi.org/10.3892/etm.2018.6381] [PMID: 30186451]
[82]
Sun, G.; Miao, Z.; Ye, Y.; Zhao, P.; Fan, L.; Bao, Z.; Tu, Y.; Li, C.; Chao, H.; Xu, X.; Ji, J. Curcumin alleviates neuroinflammation, enhances hippocampal neurogenesis, and improves spatial memory after traumatic brain injury. Brain Res. Bull., 2020, 162, 84-93.
[http://dx.doi.org/10.1016/j.brainresbull.2020.05.009] [PMID: 32502596]
[83]
Dai, J.; Gu, L.; Su, Y.; Wang, Q.; Zhao, Y.; Chen, X.; Deng, H.; Li, W.; Wang, G.; Li, K. Inhibition of curcumin on influenza A virus infection and influenzal pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK and NF-κB pathways. Int. Immunopharmacol., 2018, 54, 177-187.
[http://dx.doi.org/10.1016/j.intimp.2017.11.009] [PMID: 29153953]
[84]
Di Tu, Q.; Jin, J.; Hu, X.; Ren, Y.; Zhao, L.; He, Q. Curcumin improves the renal autophagy in rat experimental membranous nephropathy via regulating the PI3K/AKT/mTOR and Nrf2/HO-1 signaling pathways. BioMed Res. Int., 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/7069052] [PMID: 33204708]
[85]
Liu, R.; Zhang, H.B.; Yang, J.; Wang, J.R.; Liu, J.X.; Li, C.L. Curcumin alleviates isoproterenol-induced cardiac hypertrophy and fibrosis through inhibition of autophagy and activation of mTOR. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(21), 7500-7508.
[http://dx.doi.org/10.26355/eurrev_201811_16291] [PMID: 30468499]
[86]
Ding, X.Q.; Wu, W.Y.; Jiao, R.Q.; Gu, T.T.; Xu, Q.; Pan, Y.; Kong, L.D. Curcumin and allopurinol ameliorate fructose-induced hepatic inflammation in rats via miR-200a-mediated TXNIP/] NLRP3 inflammasome inhibition. Pharmacol. Res., 2018, 137, 64-75.
[http://dx.doi.org/10.1016/j.phrs.2018.09.021] [PMID: 30248460]
[87]
de Jesus Soares, T.; Volpini, R.A.; Francescato, H.D.C.; Costa, R.S.; da Silva, C.G.A.; Coimbra, T.M. Effects of resveratrol on glycerol-induced renal injury. Life Sci., 2007, 81(8), 647-656.
[http://dx.doi.org/10.1016/j.lfs.2007.06.032] [PMID: 17698148]
[88]
Alghetaa, H.; Mohammed, A.; Sultan, M.; Busbee, P.; Murphy, A.; Chatterjee, S.; Nagarkatti, M.; Nagarkatti, P. Resveratrol protects mice against SEB‐induced acute lung injury and mortality by miR‐193a modulation that targets TGF‐β signalling. J. Cell. Mol. Med., 2018, 22(5), 2644-2655.
[http://dx.doi.org/10.1111/jcmm.13542] [PMID: 29512867]
[89]
Feng, L.; Ren, J.; Li, Y.; Yang, G.; Kang, L.; Zhang, S.; Ma, C.; Li, J.; Liu, J.; Yang, L.; Qi, Z. Resveratrol protects against isoproterenol induced myocardial infarction in rats through VEGF-B/AMPK/eNOS/NO signalling pathway. Free Radic. Res., 2019, 53(1), 82-93.
[http://dx.doi.org/10.1080/10715762.2018.1554901] [PMID: 30526144]
[90]
Yang, R.; Lv, Y.; Miao, L.; Zhang, H.; Qu, X.; Chen, J.; Xu, B.; Yang, B.; Fu, J.; Tan, C.; Chen, H.; Wang, X. Resveratrol attenuates meningitic Escherichia coli -mediated blood-brain barrier disruption. ACS Infect. Dis., 2021, 7(4), 777-789.
[http://dx.doi.org/10.1021/acsinfecdis.0c00564] [PMID: 33723986]
[91]
Florensa-Zanuy, E.; Garro-Martínez, E.; Adell, A.; Castro, E.; Díaz, Á.; Pazos, Á.; Mac-Dowell, K.S.; Martín-Hernández, D.; Pilar-Cuéllar, F. Cannabidiol antidepressant-like effect in the lipopolysaccharide model in mice: Modulation of inflammatory pathways. Biochem. Pharmacol., 2021, 185, 114433.
[http://dx.doi.org/10.1016/j.bcp.2021.114433] [PMID: 33513342]
[92]
Singla, E.; Dharwal, V.; Naura, A.S. Gallic acid protects against the COPD-linked lung inflammation and emphysema in mice. Inflamm. Res., 2020, 69(4), 423-434.
[http://dx.doi.org/10.1007/s00011-020-01333-1] [PMID: 32144443]
[93]
Khurana, S.; Hollingsworth, A.; Piche, M.; Venkataraman, K.; Kumar, A.; Ross, G.M.; Tai, T.C. Antiapoptotic actions of methyl gallate on neonatal rat cardiac myocytes exposed to H2O2. Oxid. Med. Cell. Longev., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/657512] [PMID: 24672637]
[94]
Sanjay, S.; Girish, C.; Toi, P.C.; Bobby, Z. Gallic acid attenuates isoniazid and rifampicin-induced liver injury by improving hepatic redox homeostasis through influence on Nrf2 and NF-κB signalling cascades in Wistar Rats. J. Pharm. Pharmacol., 2021, 73(4), 473-486.
[http://dx.doi.org/10.1093/jpp/rgaa048] [PMID: 33793834]
[95]
Liu, Y.L.; Hsu, C.C.; Huang, H.J.; Chang, C.J.; Sun, S.H.; Lin, A.M.Y. Gallic acid attenuated LPS-induced neuroinflammation: protein aggregation and necroptosis. Mol. Neurobiol., 2020, 57(1), 96-104.
[http://dx.doi.org/10.1007/s12035-019-01759-7] [PMID: 31832973]
[96]
Salman, M.; Tabassum, H.; Parvez, S. Tannic Acid Provides Neuroprotective Effects Against Traumatic Brain Injury Through the PGC-1α/Nrf2/HO-1 Pathway. Mol. Neurobiol., 2020, 57(6), 2870-2885.
[http://dx.doi.org/10.1007/s12035-020-01924-3] [PMID: 32399817]
[97]
Luduvico, K.P.; Spohr, L.; Soares, M.S.P.; Teixeira, F.C.; de Farias, A.S.; Bona, N.P.; Pedra, N.S.; de Oliveira Campello Felix, A.; Spanevello, R.M.; Stefanello, F.M. Antidepressant effect and modulation of the redox system mediated by tannic acid on lipopolysaccharide-induced depressive and inflammatory changes in mice. Neurochem. Res., 2020, 45(9), 2032-2043.
[http://dx.doi.org/10.1007/s11064-020-03064-5] [PMID: 32500408]
[98]
Sivanantham, A.; Pattarayan, D.; Bethunaickan, R.; Kar, A.; Mahapatra, S.K.; Thimmulappa, R.K.; Palanichamy, R.; Rajasekaran, S. Tannic acid protects against experimental acute lung injury through downregulation of TLR4 and MAPK. J. Cell. Physiol., 2019, 234(5), 6463-6476.
[http://dx.doi.org/10.1002/jcp.27383] [PMID: 30246289]
[99]
Ma, D.; Zheng, B.; Du, H.; Han, X.; Zhang, X.; Zhang, J.; Gao, Y.; Sun, S.; Chu, L. The mechanism underlying the protective effects of tannic acid against isoproterenol-induced myocardial fibrosis in mice. Front. Pharmacol., 2020, 11, 716.
[http://dx.doi.org/10.3389/fphar.2020.00716] [PMID: 32499705]
[100]
Li, M.; Liu, P.; Xue, Y.; Liang, Y.; Shi, J.; Han, X.; Zhang, J.; Chu, X.; Chu, L. Tannic acid attenuates hepatic oxidative stress, apoptosis and inflammation by activating the Keap1 Nrf2/ARE signaling pathway in arsenic trioxide toxicated rats. Oncol. Rep., 2020, 44(5), 2306-2316.
[http://dx.doi.org/10.3892/or.2020.7764] [PMID: 33000240]
[101]
Zeng, J.; Wan, X.; Liu, T.; Xiong, Y.; Xiang, G.; Peng, Y.; Zhu, R.; Zhou, Y.; Liu, C. Chlorogenic acid ameliorates Klebsiella pneumoniae -induced pneumonia in immunosuppressed mice via inhibiting the activation of NLRP3 inflammasomes. Food Funct., 2021, 12(19), 9466-9475.
[http://dx.doi.org/10.1039/D0FO03185B] [PMID: 34473137]
[102]
Wei, M.; Zheng, Z.; Shi, L.; Jin, Y.; Ji, L. Natural polyphenol chlorogenic acid protects against acetaminophen-induced hepatotoxicity by activating ERK/Nrf2 antioxidative pathway. Toxicol. Sci., 2018, 162(1), 99-112.
[http://dx.doi.org/10.1093/toxsci/kfx230] [PMID: 29136249]
[103]
Ding, Y.; Li, X.; Liu, Y.; Wang, S.; Cheng, D. Protection mechanisms underlying oral administration of chlorogenic acid against cadmium-induced hepatorenal injury related to regulating intestinal flora balance. J. Agric. Food Chem., 2021, 69(5), 1675-1683.
[http://dx.doi.org/10.1021/acs.jafc.0c06698] [PMID: 33494608]
[104]
Gao, L.; Li, X.; Meng, S.; Ma, T.; Wan, L.; Xu, S. Chlorogenic acid alleviates Aβ25-35-induced autophagy and cognitive impairment via the mTOR/TFEB signaling pathway. Drug Des. Devel. Ther., 2020, 14, 1705-1716.
[http://dx.doi.org/10.2147/DDDT.S235969] [PMID: 32440096]
[105]
Tian, L.; Su, C.P.; Wang, Q.; Wu, F.J.; Bai, R.; Zhang, H.M.; Liu, J.Y.; Lu, W.J.; Wang, W.; Lan, F.; Guo, S.Z. Chlorogenic acid: A potent molecule that protects cardiomyocytes from TNF‐α–induced injury via inhibiting NF‐κB and JNK signals. J. Cell. Mol. Med., 2019, 23(7), 4666-4678.
[http://dx.doi.org/10.1111/jcmm.14351] [PMID: 31033175]
[106]
Li, X.; Shan, C.; Wu, Z.; Yu, H.; Yang, A.; Tan, B. Emodin alleviated pulmonary inflammation in rats with LPS-induced acute lung injury through inhibiting the mTOR/HIF-1α/VEGF signaling pathway. Inflamm. Res., 2020, 69(4), 365-373.
[http://dx.doi.org/10.1007/s00011-020-01331-3] [PMID: 32130427]
[107]
Dai, S.; Ye, B.; Chen, L.; Hong, G.; Zhao, G.; Lu, Z. Emodin alleviates LPS‐induced myocardial injury through inhibition of NLRP3 inflammasome activation. Phytother. Res., 2021, 35(9), 5203-5213.
[http://dx.doi.org/10.1002/ptr.7191] [PMID: 34131970]
[108]
Leung, S.W.; Lai, J.H.; Wu, J.C.C.; Tsai, Y.R.; Chen, Y.H.; Kang, S.J.; Chiang, Y.H.; Chang, C.F.; Chen, K.Y. Neuroprotective effects of emodin against ischemia/reperfusion injury through activating ERK-1/2 signaling pathway. Int. J. Mol. Sci., 2020, 21(8), 2899.
[http://dx.doi.org/10.3390/ijms21082899] [PMID: 32326191]
[109]
Quan, M.; Lv, Y.; Dai, Y.; Qi, B.; Fu, L.; Chen, X.; Qian, Y. Tanshinone IIA protects against lipopolysaccharide-induced lung injury through targeting Sirt1. J. Pharm. Pharmacol., 2019, 71(7), 1142-1151.
[http://dx.doi.org/10.1111/jphp.13087] [PMID: 30868609]
[110]
Xiong, C.; Zhou, H.; Wu, J.; Guo, N.Z. The protective effects and the involved mechanisms of tanshinone iia on sepsis-induced brain damage in mice. Inflammation, 2019, 42(1), 354-364.
[http://dx.doi.org/10.1007/s10753-018-0899-z] [PMID: 30255286]
[111]
Deng, H.; Yu, B.; Li, Y. Tanshinone IIA alleviates acute ethanol‐induced myocardial apoptosis mainly through inhibiting the expression of PDCD4 and activating the PI3K/Akt pathway. Phytother. Res., 2021, 35(8), 4309-4323.
[http://dx.doi.org/10.1002/ptr.7102] [PMID: 34169595]
[112]
Wang, W.; Guan, C.; Sun, X.; Zhao, Z.; Li, J.; Fu, X.; Qiu, Y.; Huang, M.; Jin, J.; Huang, Z. Tanshinone IIA protects against acetaminophen-induced hepatotoxicity via activating the Nrf2 pathway. Phytomedicine, 2016, 23(6), 589-596.
[http://dx.doi.org/10.1016/j.phymed.2016.02.022] [PMID: 27161400]
[113]
Lu, J.; Zhou, H.; Meng, D.; Zhang, J.; Pan, K.; Wan, B.; Miao, Z. Tanshinone iia improves depression-like behavior in mice by activating the ERK-CREB-BDNF signaling pathway. Neuroscience, 2020, 430, 1-11.
[http://dx.doi.org/10.1016/j.neuroscience.2020.01.026] [PMID: 32014436]
[114]
Lei, J.; Shen, Y.; Xv, G.; Di, Z.; Li, Y.; Li, G. Aloin suppresses lipopolysaccharide-induced acute lung injury by inhibiting NLRP3/NF-κB via activation of SIRT1 in mice. Immunopharmacol. Immunotoxicol., 2020, 42(4), 306-313.
[http://dx.doi.org/10.1080/08923973.2020.1765373] [PMID: 32419528]
[115]
Birari, L.; Wagh, S.; Patil, K.R.; Mahajan, U.B.; Unger, B.; Belemkar, S.; Goyal, S.N.; Ojha, S.; Patil, C.R. Aloin alleviates doxorubicin-induced cardiotoxicity in rats by abrogating oxidative stress and pro-inflammatory cytokines. Cancer Chemother. Pharmacol., 2020, 86(3), 419-426.
[http://dx.doi.org/10.1007/s00280-020-04125-w] [PMID: 32812061]
[116]
Hua, H.; Sheng, J.; Cui, Y.; Zhang, W.; Hu, B.; Cheng, Y.; Guo, Y.; Qian, H. The intervention and mechanism of action for aloin against subchronic aflatoxin b1 induced hepatic injury in rats. Int. J. Mol. Sci., 2021, 22(21), 11620.
[http://dx.doi.org/10.3390/ijms222111620] [PMID: 34769051]
[117]
Jing, Y.; Yang, D.X.; Wang, W.; Yuan, F.; Chen, H.; Ding, J.; Geng, Z.; Tian, H.L. Aloin protects against blood–brain barrier damage after traumatic brain injury in mice. Neurosci. Bull., 2020, 36(6), 625-638.
[http://dx.doi.org/10.1007/s12264-020-00471-0] [PMID: 32100248]
[118]
Ramakrishnan, R.K.; Kashour, T.; Hamid, Q.; Halwani, R.; Tleyjeh, I.M. Unraveling the mystery surrounding post-acute sequelae of COVID-19. Front. Immunol., 2021, 12, 686029.
[http://dx.doi.org/10.3389/fimmu.2021.686029] [PMID: 34276671]
[119]
Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; Chen, Z.S. Microbiota in health and diseases. Signal Transduct. Target. Ther., 2022, 7(1), 135.
[http://dx.doi.org/10.1038/s41392-022-00974-4] [PMID: 35461318]
[120]
Galeotti, C.; Bayry, J. Autoimmune and inflammatory diseases following COVID-19. Nat. Rev. Rheumatol., 2020, 16(8), 413-414.
[http://dx.doi.org/10.1038/s41584-020-0448-7] [PMID: 32499548]
[121]
McDonald, L.T. Healing after COVID-19: Are survivors at risk for pulmonary fibrosis? Am. J. Physiol. Lung Cell. Mol. Physiol., 2021, 320(2), L257-L265.
[http://dx.doi.org/10.1152/ajplung.00238.2020] [PMID: 33355522]
[122]
Vora, S.M.; Lieberman, J.; Wu, H. Inflammasome activation at the crux of severe COVID-19. Nat. Rev. Immunol., 2021, 21(11), 694-703.
[http://dx.doi.org/10.1038/s41577-021-00588-x] [PMID: 34373622]
[123]
Deftereos, S.; Giannopoulos, G.; Vrachatis, D.A.; Siasos, G.; Giotaki, S.G.; Cleman, M.; Dangas, G.; Stefanadis, C. Colchicine as a potent anti-inflammatory treatment in COVID-19: Can we teach an old dog new tricks? Eur. Heart J. Cardiovasc. Pharmacother., 2020, 6(4), 255.
[http://dx.doi.org/10.1093/ehjcvp/pvaa033] [PMID: 32337546]
[124]
McCarty, M.F.; Iloki Assanga, S.B.; Lewis Luján, L.; O’Keefe, J.H.; DiNicolantonio, J.J. Nutraceutical strategies for suppressing nlrp3 inflammasome activation: Pertinence to the management of COVID-19 and Beyond. Nutrients, 2020, 13(1), 47.
[http://dx.doi.org/10.3390/nu13010047] [PMID: 33375692]
[125]
Chen, L.; Li, X.; Chen, M.; Feng, Y.; Xiong, C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc. Res., 2020, 116(6), 1097-1100.
[http://dx.doi.org/10.1093/cvr/cvaa078] [PMID: 32227090]
[126]
Liu, F.; Long, X.; Zhang, B.; Zhang, W.; Chen, X.; Zhang, Z. ACE2 expression in pancreas may cause pancreatic damage after SARS-CoV-2 infection. Clin. Gastroenterol. Hepatol., 2020, 18(9), 2128-2130.e2.
[http://dx.doi.org/10.1016/j.cgh.2020.04.040] [PMID: 32334082]
[127]
El-Arif, G.; Farhat, A.; Khazaal, S.; Annweiler, C.; Kovacic, H.; Wu, Y.; Cao, Z.; Fajloun, Z.; Khattar, Z.A.; Sabatier, J.M. The renin-angiotensin system: A key role in sars-cov-2-induced COVID-19. Molecules, 2021, 26(22), 6945.
[http://dx.doi.org/10.3390/molecules26226945] [PMID: 34834033]
[128]
Iwasaki, M.; Saito, J.; Zhao, H.; Sakamoto, A.; Hirota, K.; Ma, D. Inflammation triggered by SARS-CoV-2 and ACE2 augment drives multiple organ failure of severe COVID-19: molecular mechanisms and implications. Inflammation, 2021, 44(1), 13-34.
[http://dx.doi.org/10.1007/s10753-020-01337-3] [PMID: 33029758]
[129]
Junior, A.G.; Tolouei, S.E.L.; Dos Reis Lívero, F.A.; Gasparotto, F.; Boeing, T.; de Souza, P. Natural agents modulating ACE-2: A review of compounds with potential against SARS-CoV-2 infections. Curr. Pharm. Des., 2021, 27(13), 1588-1596.
[http://dx.doi.org/10.2174/18734286MTEzvMzMcw] [PMID: 33459225]
[130]
Elshafei, A.; Khidr, E.G.; El-Husseiny, A.A.; Gomaa, M.H. RAAS, ACE2 and COVID-19: A mechanistic review. Saudi J. Biol. Sci., 2021, 28(11), 6465-6470.
[http://dx.doi.org/10.1016/j.sjbs.2021.07.003] [PMID: 34305426]
[131]
Rodriguez-Perez, A.I.; Labandeira, C.M.; Pedrosa, M.A.; Valenzuela, R.; Suarez-Quintanilla, J.A.; Cortes-Ayaso, M.; Mayán-Conesa, P.; Labandeira-Garcia, J.L. Autoantibodies against ACE2 and angiotensin type-1 receptors increase severity of COVID-19. J. Autoimmun., 2021, 122, 102683.
[http://dx.doi.org/10.1016/j.jaut.2021.102683] [PMID: 34144328]
[132]
Triposkiadis, F.; Xanthopoulos, A.; Giamouzis, G.; Boudoulas, K.D.; Starling, R.C.; Skoularigis, J.; Boudoulas, H.; Iliodromitis, E. ACE2, the counter-regulatory renin–angiotensin system axis and COVID-19 severity. J. Clin. Med., 2021, 10(17), 3885.
[http://dx.doi.org/10.3390/jcm10173885] [PMID: 34501332]
[133]
Kim, E.N.; Kim, M.Y.; Lim, J.H.; Kim, Y.; Shin, S.J.; Park, C.W.; Kim, Y.S.; Chang, Y.S.; Yoon, H.E.; Choi, B.S. The protective effect of resveratrol on vascular aging by modulation of the renin–angiotensin system. Atherosclerosis, 2018, 270, 123-131.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.01.043] [PMID: 29407880]
[134]
Tiao, M.M.; Lin, Y.J.; Yu, H.R.; Sheen, J.M.; Lin, I.C.; Lai, Y.J.; Tain, Y.L.; Huang, L.T.; Tsai, C.C. Resveratrol ameliorates maternal and post-weaning high-fat diet-induced nonalcoholic fatty liver disease via renin-angiotensin system. Lipids Health Dis., 2018, 17(1), 178.
[http://dx.doi.org/10.1186/s12944-018-0824-3] [PMID: 30055626]
[135]
Liu, H.; Jiang, Y.; Li, M.; Yu, X.; Sui, D.; Fu, L. Ginsenoside Rg3 attenuates angiotensin ii-mediated renal injury in rats and mice by upregulating angiotensin-converting enzyme 2 in the renal tissue. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/6741057] [PMID: 31885658]
[136]
Xu, X.; Cai, Y.; Yu, Y. Effects of a novel curcumin derivative on the functions of kidney in streptozotocin-induced type 2 diabetic rats. Inflammopharmacology, 2018, 26(5), 1257-1264.
[http://dx.doi.org/10.1007/s10787-018-0449-1] [PMID: 29582239]
[137]
Anil, S.M.; Shalev, N.; Vinayaka, A.C.; Nadarajan, S.; Namdar, D.; Belausov, E.; Shoval, I.; Mani, K.A.; Mechrez, G.; Koltai, H. Cannabis compounds exhibit anti-inflammatory activity in vitro in COVID-19-related inflammation in lung epithelial cells and pro-inflammatory activity in macrophages. Sci. Rep., 2021, 11(1), 1462.
[http://dx.doi.org/10.1038/s41598-021-81049-2] [PMID: 33446817]
[138]
Jiang, Z.; Zhang, H.; Gao, J.; Yu, H.; Han, R.; Zhu, L.; Chen, X.; Fan, Q.; Hao, P.; Wang, L.; Li, X. ACE2 Expression is upregulated in inflammatory corneal epithelial cells and attenuated by resveratrol. Invest. Ophthalmol. Vis. Sci., 2021, 62(7), 25.
[http://dx.doi.org/10.1167/iovs.62.7.25] [PMID: 34160563]
[139]
Shi, Y.; Zhang, B.; Chen, X.J.; Xu, D.Q.; Wang, Y.X.; Dong, H.Y.; Ma, S.R.; Sun, R.H.; Hui, Y.P.; Li, Z.C. Osthole protects lipopolysaccharide-induced acute lung injury in mice by preventing down-regulation of angiotensin-converting enzyme 2. Eur. J. Pharm. Sci., 2013, 48(4-5), 819-824.
[http://dx.doi.org/10.1016/j.ejps.2012.12.031] [PMID: 23321685]
[140]
Du, Q.; Liao, Q.; Chen, C.; Yang, X.; Xie, R.; Xu, J. The role of transient receptor potential vanilloid 1 in common diseases of the digestive tract and the cardiovascular and respiratory system. Front. Physiol., 2019, 10, 1064.
[http://dx.doi.org/10.3389/fphys.2019.01064] [PMID: 31496955]
[141]
Talavera, K.; Startek, J.B.; Alvarez-Collazo, J.; Boonen, B.; Alpizar, Y.A.; Sanchez, A.; Naert, R.; Nilius, B. Mammalian transient receptor potential trpa1 channels: From structure to disease. Physiol. Rev., 2020, 100(2), 725-803.
[http://dx.doi.org/10.1152/physrev.00005.2019] [PMID: 31670612]
[142]
Bousquet, J.; Czarlewski, W.; Zuberbier, T.; Mullol, J.; Blain, H.; Cristol, J.P.; De La Torre, R.; Pizarro Lozano, N.; Le Moing, V.; Bedbrook, A.; Agache, I.; Akdis, C.A.; Canonica, G.W.; Cruz, A.A.; Fiocchi, A.; Fonseca, J.A.; Fonseca, S.; Gemicioğlu, B.; Haahtela, T.; Iaccarino, G.; Ivancevich, J.C.; Jutel, M.; Klimek, L.; Kraxner, H.; Kuna, P.; Larenas-Linnemann, D.E.; Martineau, A.; Melén, E.; Okamoto, Y.; Papadopoulos, N.G.; Pfaar, O.; Regateiro, F.S.; Reynes, J.; Rolland, Y.; Rouadi, P.W.; Samolinski, B.; Sheikh, A.; Toppila-Salmi, S.; Valiulis, A.; Choi, H.J.; Kim, H.J.; Anto, J.M. Potential Interplay between Nrf2, TRPA1, and TRPV1 in nutrients for the control of COVID-19. Int. Arch. Allergy Immunol., 2021, 182(4), 324-338.
[http://dx.doi.org/10.1159/000514204] [PMID: 33567446]
[143]
Bousquet, J.; Czarlewski, W.; Zuberbier, T.; Mullol, J.; Blain, H.; Cristol, J.P.; De La Torre, R.; Le Moing, V.; Pizarro Lozano, N.; Bedbrook, A.; Agache, I.; Akdis, C.A.; Canonica, G.W.; Cruz, A.A.; Fiocchi, A.; Fonseca, J.A.; Fonseca, S.; Gemicioğlu, B.; Haahtela, T.; Iaccarino, G.; Ivancevich, J.C.; Jutel, M.; Klimek, L.; Kuna, P.; Larenas-Linnemann, D.E.; Melén, E.; Okamoto, Y.; Papadopoulos, N.G.; Pfaar, O.; Reynes, J.; Rolland, Y.; Rouadi, P.W.; Samolinski, B.; Sheikh, A.; Toppila-Salmi, S.; Valiulis, A.; Choi, H.J.; Kim, H.J.; Anto, J.M. Spices to control COVID-19 symptoms: Yes, but Not Only…. Int. Arch. Allergy Immunol., 2021, 182(6), 489-495.
[http://dx.doi.org/10.1159/000513538] [PMID: 33352565]
[144]
Rouadi, P.W.; Idriss, S.A.; Bousquet, J. Olfactory and taste dysfunctions in COVID-19. Curr. Opin. Allergy Clin. Immunol., 2021, 21(3), 229-244.
[http://dx.doi.org/10.1097/ACI.0000000000000735] [PMID: 33560742]
[145]
Liviero, F.; Campisi, M.; Mason, P.; Pavanello, S. Transient receptor potential vanilloid subtype 1: Potential role in infection, susceptibility, symptoms and treatment of COVID-19. Front. Med., 2021, 8, 753819.
[http://dx.doi.org/10.3389/fmed.2021.753819] [PMID: 34805220]
[146]
Bousquet, J.; Haahtela, T.; Blain, H.; Czarlewski, W.; Zuberbier, T.; Bedbrook, A.; Cruz, A.A.; Fonseca, J.A.; Klimek, L.; Kuna, P.; Samolinski, B.; Valiulis, A.; Lemaire, A.; Anto, J.M. Available and affordable complementary treatments for COVID‐19: From hypothesis to pilot studies and the need for implementation. Clin. Transl. Allergy, 2022, 12(3), e12127.
[http://dx.doi.org/10.1002/clt2.12127] [PMID: 35344297]
[147]
Bousquet, J.; Anto, J.M.; Czarlewski, W.; Haahtela, T.; Fonseca, S.C.; Iaccarino, G.; Blain, H.; Vidal, A.; Sheikh, A.; Akdis, C.A.; Zuberbier, T. Cabbage and fermented vegetables: From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19. Allergy, 2021, 76(3), 735-750.
[http://dx.doi.org/10.1111/all.14549] [PMID: 32762135]
[148]
Jaffal, S.M.; Abbas, M.A. TRP channels in COVID-19 disease: Potential targets for prevention and treatment. Chem. Biol. Interact., 2021, 345, 109567.
[http://dx.doi.org/10.1016/j.cbi.2021.109567] [PMID: 34166652]
[149]
martelli, ; ragazzi, ; di mario, ; martelli, ; castagliuolo, ; dal maschio, ; palù, ; maschietto, ; scorzeto, ; vassanelli, ; brun, A potential role for the vanilloid receptor TRPV1 in the therapeutic effect of curcumin in dinitrobenzene sulphonic acid-induced colitis in mice. Neurogastroenterol. Motil., 2007, 19(8), 668-674.
[http://dx.doi.org/10.1111/j.1365-2982.2007.00928.x] [PMID: 17640182]
[150]
Zhi, L.; Dong, L.; Kong, D.; Sun, B.; Sun, Q.; Grundy, D.; Zhang, G.; Rong, W. Curcumin acts via transient receptor potential vanilloid-1 receptors to inhibit gut nociception and reverses visceral hyperalgesia. Neurogastroenterol. Motil., 2013, 25(6), e429-e440.
[http://dx.doi.org/10.1111/nmo.12145] [PMID: 23638900]
[151]
Zou, B.; Cao, C.; Fu, Y.; Pan, D.; Wang, W.; Kong, L. Berberine alleviates gastroesophageal reflux-induced airway hyperresponsiveness in a transient receptor potential a1-dependent manner. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-14.
[http://dx.doi.org/10.1155/2022/7464147] [PMID: 35586690]
[152]
Zan, Y.; Kuai, C.X.; Qiu, Z.X.; Huang, F. Berberine ameliorates diabetic neuropathy: TRPV1 modulation by PKC pathway. Am. J. Chin. Med., 2017, 45(8), 1709-1723.
[http://dx.doi.org/10.1142/S0192415X17500926] [PMID: 29121795]
[153]
Xia, Z-Y.; Xie, H-T.; Pan, X.; Zhao, B.; Liu, Z.G. Puerarin ameliorates allodynia and hyperalgesia in rats with peripheral nerve injury. Neural Regen. Res., 2018, 13(7), 1263-1268.
[http://dx.doi.org/10.4103/1673-5374.235074] [PMID: 30028336]
[154]
Meng, J.; Qiu, S.; Zhang, L.; You, M.; Xing, H.; Zhu, J. Berberine alleviate cisplatin-induced peripheral neuropathy by modulating inflammation signal via TRPV1. Front. Pharmacol., 2022, 12, 774795.
[http://dx.doi.org/10.3389/fphar.2021.774795] [PMID: 35153744]
[155]
Gao, W.; Zan, Y.; Wang, Z.J.; Hu, X.; Huang, F. Quercetin ameliorates paclitaxel-induced neuropathic pain by stabilizing mast cells, and subsequently blocking PKCε-dependent activation of TRPV1. Acta Pharmacol. Sin., 2016, 37(9), 1166-1177.
[http://dx.doi.org/10.1038/aps.2016.58] [PMID: 27498772]
[156]
Telenti, A.; Arvin, A.; Corey, L.; Corti, D.; Diamond, M.S.; García-Sastre, A.; Garry, R.F.; Holmes, E.C.; Pang, P.S.; Virgin, H.W. After the pandemic: Perspectives on the future trajectory of COVID-19. Nature, 2021, 596(7873), 495-504.
[http://dx.doi.org/10.1038/s41586-021-03792-w] [PMID: 34237771]
[157]
Antia, R.; Halloran, M.E. Transition to endemicity: Understanding COVID-19. Immunity, 2021, 54(10), 2172-2176.
[http://dx.doi.org/10.1016/j.immuni.2021.09.019] [PMID: 34626549]
[158]
Perumal, R.; Shunmugam, L.; Naidoo, K.; Wilkins, D.; Garzino-Demo, A.; Brechot, C.; Vahlne, A.; Nikolich, J. Biological mechanisms underpinning the development of long COVID. iScience, 2023, 26(6), 106935.
[http://dx.doi.org/10.1016/j.isci.2023.106935] [PMID: 37265584]
[159]
Cohen, L.E.; Spiro, D.J.; Viboud, C. Projecting the SARS-CoV-2 transition from pandemicity to endemicity: Epidemiological and immunological considerations. PLoS Pathog., 2022, 18(6), e1010591.
[http://dx.doi.org/10.1371/journal.ppat.1010591] [PMID: 35771775]
[160]
Markov, P.V.; Ghafari, M.; Beer, M.; Lythgoe, K.; Simmonds, P.; Stilianakis, N.I.; Katzourakis, A. The evolution of SARS-CoV-2. Nat. Rev. Microbiol., 2023, 21(6), 361-379.
[http://dx.doi.org/10.1038/s41579-023-00878-2] [PMID: 37020110]
[161]
Adhikari, A.; Mandal, D.; Rana, D.; Nath, J.; Bose, A.; Sonika; Orasugh, J.T.; De, S.; Chattopadhyay, D. COVID-19 mitigation: Nanotechnological intervention, perspective, and future scope. Materials Adv., 2023, 4(1), 52-78.
[http://dx.doi.org/10.1039/D2MA00797E]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy